
Tutorial 5

February 16, 2007

1. Write a procedure norm that takes a list, which represents a vector, and
computes its Eucledean norm. Whenever you have a choice between
using HOPs and using recursion, use recursion. You may use built-in
sqrt, but not built-in square. Example:

1]=> (norm ())

;Value: 0

1]=> (norm ’(1))

;Value: 1

1]=> (norm ’(3 4))

;Value: 5

1]=> (norm ’(1 2 3 -4 -5 -6))

;Value: 9.539392014169456

The solution:

;; (square x) returns the square of x

;; Pre: x is a number

;; Return: the square of x

(define (square x)

(* x x))

;; (sum-of-squares lst) returns the sum of the squares

;; of the numbers in the list lst

;; Pre: lst is a list (flat) of numbers

;; Return: the sum of the squares of the numbers in lst

(define (sum-of-squares lst)

(if (null? lst)

0

(+ (square (car lst)) (sum-of-squares (cdr lst)))))

;; (norm lst) returns a Euclidean norm of a vector,

;; represented by a list lst

;; Pre: lst is a flat list of numbers

;; Return: a Euclidean norm of a vector, represented by lst

(define (norm lst)

(sqrt (sum-of-squares lst)))

1

2. Redo the question, only this time you may not use recursion.

;; (square x) returns the square of x

;; Args: x - a number, the square if which is returned

;; Pre: x is a number

;; Post: none

;; Return: the square of x

(define (square x)

(* x x))

;; (norm lst) returns a Euclidean norm of a vector,

;; represented by a list lst

;; Args: lst - a list representation of a vector

;; Pre: lst is a flat list of numbers

;; Post: none

;; Return: a Euclidean norm of a vector, represented by lst

(define (norm lst)

(sqrt (apply + (map square lst))))

3. Redo the question, only this time you may not use recursion and you
may not use any helper procedures.

;; (norm lst) returns a Euclidean norm of a vector,

;; represented by a list lst

;; Args: lst - a list representation of a vector

;; Pre: lst is a flat list of numbers

;; Post: none

;; Return: a Euclidean norm of a vector, represented by lst

(define (norm lst)

(let ((square (lambda (x)

(* x x))))

(sqrt (apply + (map square lst)))))

MUCH BETTER:

(define (norm lst)

(sqrt (apply + (map (lambda (x) (* x x)) lst))))

2

We represent a matrix as a list of lists. For example, the matrix





1 2 3 4
5 6 7 8
9 0 1 2



 is represented by ((1 2 3 4) (5 6 7 8) (9 0 1 2))

1. Write a procedure add to perform matrix addition for matrices repre-
sented as above.

;; (add matrixA matrixB) returns the sum of matrixA and matrixB

;; Pre: matrixA, matrixB - repesented as described above,

;; and have the same number of rows and columns

;; Return: the sum of matrixA and matrixB

(define (add matrixA matrixB)

(map (lambda (rowA rowB)

(map + rowA rowB))

matrixA matrixB))

2. Write a function column1 to extract the first column of a matrix.

;; (column1 matrix) returns the first column of matrix

;; Pre: matrix - repesented as described above and is non-empty

;; Return: the first column of matrix represented as a list

(define (column1 matrix)

(map car matrix))

3. Write a function columnN to extract the Nth column of a matrix. (Start
counting from 1)

;; (columnN matrix N) returns the Nth column of matrix

;; Pre: matrix - repesented as described above and has

;; at least N columns

;; Return: the Nth column of matrix represented as a list

(define (columnN matrix N)

(if (= N 1)

(map car matrix)

(columnN (map cdr matrix) (- N 1))))

3

4. Write a function sum-Nth-col to sum the Nth column of a matrix.
(Start counting from 1)

;; (sum-Nth-col matrix N) return the sum of the nth column of matrix

;; Pre: matrix has an nth column

;; Return: the sum of the numbers in the nth column of matrix

(define (sum-Nth-col matrix N)

(if (= N 1)

(apply + (map car matrix))

(sum-Nth-col (map cdr matrix) (- N 1))))

5. Write a procedure mult to perform multiplication of a matrix by a
scalar.

;; (mult c matrix) returns the multiplication of matrix by c

;; Pre: matrix - repesented as described above

;; c - scalar

;; Return: the multiplication of matrix by c

(define (mult c matrix)

(map (lambda (row)

(map (lambda (x) (* c x))

row))

matrix))

6. Write a procedire matrix mult to perform matrix multiplication.

(define (matrix_mult matrixA matrixB)

(letrec ((num_cols (length (car matrixB)))

(onerow (lambda (row col)

(if (> col num_cols) ()

(cons (apply + (map *

row

(columnN matrixB col)))

(onerow row (+ col 1))))))

(mult_row (lambda (row) (onerow row 1))))

(map mult_row matrixA)))

4

