Tutorial 6

Week of February 19, 2007

SML Environment

. How do I start SML?
On CDF just type sml and you will enter the SML environment:

werewolf:\$ sml

Standard ML of New Jersey, Version 110.0.7,
September 28, 2000 [CM; autoload enabled]

The ’-’ is the SML prompt. Now you can type in ML code and the interpreter
immediately evaluates it and produces an output.

. How do T quit SML?

simply press Ctrl-D (under Windows press Ctrl-Z)

. How do I load my code from a file?

The function use is defined at top level and will load a file containing SML source
code.

For example, loading your file myfile.sml:

- use "myfile.sml";
[opening myfile.sml]
val it = () : unit

What is val it = () : wunit ? The function use returns () of type unit. We
will see what this means later.

If you are are loading a file that is in a directory different from the one you started
sml in, then you need to provide a full path to the file.

Note the semicolon at the end: to ML, it means “the user is done tying, now I
should start working”.

. How do I determine the current directory or change it?

The function 0S.FileSys.getDir() returns the current directory.

The function 0S.FileSys.chDir("path") sets the current directory to path.

. What do I use for comments?

Use (* comments are here *). The comment can be multi-line.

. SML is case sensitive:

So you must match the case exactly (e.g. getdir would be an error!)

1

7.

10.

SML Interactive input:

Input to the top level interpreter (i.e., declarations and expressions) must be termi-
nated by a semicolon (and carriage return) before the system will evaluate it. The
system then prints out a response indicating the effect of the evaluation. Fxpres-
sions are treated as implicit declarations of a standard variable ¢t. For example,

- 3; (* user input after prompt *)
val it = 3 : int (x system response *)

This means that the value of the last top level expression evaluated can be referred
to using the variable it. For example,

- 2.5;
val it = 2.5 : real
- it;
val it = 2.5 : real

Multi-line expressions:

If you type a long expression, you can enter it in several lines. In this case the
prompt for subsequent lines changes to =. Note that you still need to end the
expression with a semicolon.

if 10 > b

then 1

else 2;

val it = 1 : int

. Interrupting compilation or execution:

Typing Ctrl-C should interrupt the interpreter and return you to top level (useful
to interrupt infinite recursion).

Error messages:

When compiling files, the error messages include line numbers and character posi-
tions within the line. For example:

- if true
= then 5 true
else 6;
std_in:7.6-7.11 Error: operator is not a function [literall]
operator: int
in expression:
5 true

11.

12.

13.

This means: there is an error that starts at line 7, character 6 and ends at line 7
character 11. And the error is: I am trying to apply 5 to true, and I can’t.

More Error Messages:

There are a number of different forms of type error message, and it may require
some practice before you become adept at interpreting them. The most common
form indicates a mismatch between the type of a function (or operator) and its
argument (or operand). A representation of the offending expression is usually
included, but this is an image of the internal abstract syntax for the expression
and may differ significantly from the original source code.

A very useful reference for a list of all error messages.

All the error messages produced by SML/NJ are documented in the SML/NJ Error
and Warning Messages page:

http://www.smlnj.org/doc/errors.html

Debugging in SML:

There is no debugger installed with SML/NJ. SML is a strongly typed language
and its type inference system is powerful enough to capture a wide variety of errors
and ambiguities. Furthermore, there is run-time checking so there’s no way you
can crash the system (except for an infinite loop).

ML basics data types

. unit: this type has only one element ()

- 0;

val it = () : unit

. bool: this type has two elements: true and false
Operations on bools: not, andalso, orelse.

For example:

if (not true andalso false) orelse true

= then "foo"
= else "bar";
val it = "foo" : string

. integer: {... 2,7 1,0,1,2, ... }
Operations: +, —, %, div, mod, <, >, =, <=, >=, <>

For example:

-5+ 6 x 2 - 3div 2;
val it = 16 : int

- 5mod 2 >= 6 mod 2;
val it = true : bool

” N

Note the use of = for negation. Here’s why: is a binary operator while 7~ ” is

a unary operator. For example:

- -5;
stdIn:27.1 Error: expression or pattern begins with infix identifier "-"
stdIn:27.1-27.3 Error: operator and operand don’t agree [literall

operator domain: ’Z * ’Z

operand: int

in expression:

-5

- ”5;
val it = 75 : int

In the first case, SML complains that “-” is a binary operator and we only provided
one argument.

4. real: 1.0, 3.14159, 11.7, ...
Operations: +, —, *, <, >, =, <=, >=

Note that = and <> are not defined for reals.
Instead, we can use a <= b andalso b >= a.

Note: You cannot mix reals and integers in one expression. For example:

-2 -1.5;
stdIn:43.1-43.8 Error: operator and operand don’t agree [literall
operator domain: int * int
operand: int * real
in expression:
2-1.5

This means: there is an error between line 43, character 1 and line 43, character 8.
The error is: operator and operand don’t agree, meaning the type of the operand
provided to an operator is not what the operator expects. In this case: operator
domain is two integers, but we gave it an integer and a real.

Now, but wasn’t there an operator ”-” defined for reals as well? Yes, that’s right.
But for mathematical operators, if the type is not specified (or inferred), then type
integer is assumed. For example:

- 2;
val it = 2 : int

- 2.0;

val it = 2.0 : real
- real(2);

val it = 2.0 : real

- 2.0 -1.5;
val it = 0.5 : real

- real(2) - 1.5;
val it = 0.5 : real

Note that it inspects the leftmost argument first. For example:

- 1.5 + 2;
stdIn:1.1-2.3 Error: operator and operand don’t agree [literal]
operator domain: real * real
operand: real * int
in expression:
1.5 + 2

Now it expects two reals!

. string: ”Hello, world”, ”Wow!”, “CSC324 is fun!”
Operations: ~ for concatenation

For example:

- "Hello";
val it = "Hello" : string

— IIHelloll ~ non =~ IIJimll.
val it = "Hello Jim" : string

. list: [1, 5, 2, 3] [] is called nil, it is the empty list
Operations: ::, @, tl , hd

For example:

- [0;
val it = [] : ’a list
- [1, 2, ~3];

val it = [1,2,73] : int list

- "foo":: ["bar"] .
val it = ["foo","bar"] : string list

- [1,2]0[3,4];
val it = [1,2,3,4] : int list

- hd [1,2];
val it = 1 : int

- t1 [1,2];
val it = [2] : int list

Very important: all elements of the list must be of the same type. Consider the
following:

- [1, 2, "Hello"];
stdIn:17.1-17.16 Error: operator and operand don’t agree [literal]
operator domain: int * int list
operand: int * string list
in expression:
2 :: "Hello" :: nil

The error message means that there is an error between line 17, character 1 and
line 17, character 16. Then it says that operator and operand don’t agree. But did
we have any operators??? Yes!!!!

When we typed [1,2,"Hello"], we actually did 1::2::"Hello"::nil. And the
error is: cannot do 2::"Hello"::nil, because 2 is an integer, and ["Hello"] is
a list of strings!

. tuple: (1, ”Test”, 2.5) note that unit is an empty tuple

Operations: accessing component N of a tuple Tuple: #N Tuple

- (1, "Test", 2.5);
val it = (1,"Test",2.5) : int * string * real

- #2(1, "Test", 2.5);
val it = "Test" : string

. (llall, 1, "‘2) = (llall, 2_1, 1_3);
val it = true : bool

. record: {lastname="Smith”, ID=200, Age=59}

Note: records are similar to tuple but their components have names, and the order

does not matter! In fact, a tuple is a special case of a record, where the names of
the fields are 1, 2, 3, ...

Operations: accessing component Name of record Record: #Name Record

- {lastname="Smith", ID=200, Age=59};
val it = {Age=59,1ID=200,lastname="Smith"} : {Age:int, ID:int, lastname:string}

- #lastname {lastname="Smith", ID=200, Age=59};
val it = "Smith" : string

But what if I want my own variable? Not just this it that keeps changing? You can
declare your own:

- val aNumber = 4%5;
val aNumber = 20 : int

- val aBiggerNumber = aNumber + 10;
val aBiggerNumber = 30 : int

- val Sheila = {job="Prof", course=324, location="StG"};
val Sheila = {course=324, job="Prof",location="StG"}
: {course:int, job:string, location:string}

- #job Sheila;
val it = "Prof" : string

3 Functions

Very important: any ML functions take exactly 1 argument. The argument may be
a list, a tuple, a record, etc., but it is 1 singe argument.

The syntax for function declaration:
fun <name> <argument> = <body>;

Examples:

- fun thisCourse () = "csc324";
val thisCourse = fn : unit -> string

- thisCourse ();
val it = "csc324" : string

— fun thisCourse x = 324;
val thisCourse = fn : ’a -> int

- thisCourse "foo";
val it = 324 : int

- thisCourse 333;
val it = 324 : int

- fun sum(x,y)=x+y;
val sum = fn : int * int -> int

- sum(1,1);
val it = 2 : int

- sum(1, 1.1);
stdIn:25.1-25.12 Error: operator and operand don’t agree [tycon mismatch]
operator domain: int * int
operand: int * real
in expression:
sum (1,1.1)

- fun sum(x:real, y:real) = x+y;
val sum = fn : real * real -> real

- sum(1.0, 1.1);
val it = 2.1 : real

- fun sum(x, y:real)=x+y;
val sum = fn : real * real -> real

- fun sum(x,y)=(x+y) :real;
val sum = fn : real * real -> real

- fun len L = if null L then O else 1 + len (t1 L);
val len = fn : ’a list -> int

- len [1,2,3];
val it = 3 : int

—_ len[llcsc324ll , lliSlI N Ilfunll s 11} | II:] ;
val it = 4 : int

- fun sumlist L = if null L then 0 else hd L + sumlist(tl L);
val sumlist = fn : int list -> int

- sumlist[1,2,3];
val it = 6 : int

10

- sumlist[2.3, 4.5, 6.7];
stdIn:36.1-36.23 Error: operator and operand don’t agree [tycon mismatch]
operator domain: int list
operand: real list
in expression:
sumlist (2.3 :: 4.5 :: 6.7 :: nil)

- fun switch(x,y) = (y,x);
val switch = fn : ’a * ’b -> ’b x ’a

- fun add_dummy (x, y, z) = (x, y, z, "dummy");
val add_dummy = fn : ’a * ’b * ’c -> ’a * ’b * ’c * string

- fun add_dummy x = "dummy"::x;
val add_dummy = fn : string list -> string list

11

4 Pattern matching

The syntax for function declaration with pattern matching:

fun <name> <patternl> = <expl>
| <name> <pattern2> = <exp2>
| <name> <patternN> = <expN>;

This means: the function name is name. It takes one argument (as any other ML
function). It tries to match the argument to patternl. If it succeeds, it returns expl.
Otherwise, tries to match the argument to pattern 2. Etc, etc.

For example we can rewrite our len to use pattern matching:

- fun len [] =0
| len (head::tail) = 1 + len tail;
val len = fn : ’a list -> int

- len [1,2,3];
val it = 3 : int

- len["csc324","is" ,"fun" ,n | ||] ;
val it = 4 : int

12

But beware non non-exhaustive patterns:

- fun len (head::tail) = 1 + len tail;
stdIn:44.1-44 .36 Warning: match nonexhaustive
head :: tail => ...

val len = fn : ’a list -> int
- len [1,2,3];
uncaught exception nonexhaustive match failure

raised at: stdIn:44.24

More examples:

Define a function firstlist which takes as input a list of pairs and gives back the list
consisting of the first elements only. For example:

firstlist [1 = []

firstlist [(1,2),(1,3)] = [1,1]

firstlist [(1,"a"),(2,"b"),(3,"c")] = [1,2,3]

firstlist [([],"a"),([1]1,"b"),([1,2],"c")] = [[]1,[1]1,[1,2]]

Solution:

- fun firstlist [] = []
| firstlist ((el, e2)::tail) = el::(firstlist tail);
val firstlist = fn : (’a * ’b) list -> ’a list

Note: no variable can occur twice in each pattern!
For example,

- fun eq(x,x)=true
| eq(x,y)=false;
Error: duplicate variable in pattern(s)

- fun eq(x,y) = (x=y);
val eq = fn : ’’a * ’’a -> bool

- fun eq(x,y) = x<=y andalso y<=x;
val eq = fn : int * int -> bool

- fun eq(x:real, y) = x<=y andalso y<=x;
val eq = fn : real * real -> bool

13

5 Anonymous functions
The syntax for anonymous functions is:

fn <argument> => <body>;

Examples:
- fn x => x;
val it = fn : ’a -> ’a

- (fn x => x) 5;
val it = 5 : int

- (fn x => x) "foo";
val it = "foo" : string

- fn (x, y) = [2xy, 2xx];
val it = fn : int * int -> int list

- fn (x,y) => x"y~"!I";
val it = fn : string * string -> string

More complicated example:

Write a function double that takes a list of tuples of integers and strings and doubles
the integer in every tuple.

fun double []1 = []
I double ((first:int*string)::rest) = (2 * #1first, #2first)::double(rest);

val double = fn : (int * string) list -> (int * string) list

- double [(1, "abc"), (2, "def")];
val it = [(2,"abc"),(4,"def")] : (int * String) list

BUT:

fun double [] = []
| double (first::rest) = (2 * #1first, #2first)::double(rest);

=> Error: unresolved flex record (need to know the names of ALL the fields
in this context)

14

6 Functions as parameters

Write a function applyall that takes a list of functions and a value and returns the list,
the elements of which are the results of applying every function in the input list to the
input value, in order.

fun applyall ([1, _) = []
| applyall (first::rest, x) = (first x)::applyall(rest,x);

val applyall = fn : (’a -> ’b) list * ’a -> ’b list

fun positive n = n>0;

fun nonnegative n = n>=0;

fun id n = n;

fun double n = 2%*n;

fun listoftwo L = length(L)=2;

applyall([positive, nonnegative], 0);
val it = [false,true] : bool list

applyall([id, doublel, 1);
val it = [1,2] : int list

applyall([null, listoftwo], [1,2]);
val it = [false,true] : bool list

15

