Tutorial 3

Week of January 29, 2007



1 Programming Style

All the coded you develop is expected to adhere to good programming style.

Please review the docuements on Assignment Code Requirements and Marking
Information and on testing that are accessible from the main CSC324 web page.

Your TA should have also discussed the following with you:

e indentation
e proper/improper use of procedure (particular good ifs/conds)
e the need for documentation

e code comments and in particualr pre and post conditions (what they are and that they
should define them in their code)



2 Conditionals

(if <condition>
<then-expression>
<else-expression>)

Example:
11=> (Gf > 3 2)
’foo
’bar)

;Value: foo

1 1=> Gf (= 3 2)
’foo
’bar)

;Value: bar

1 1=> @Gf (> 3 2)
’fo0)
;Value: foo

11=> (if (= 3 2)
’£00)
;Unspecified return value <---- generally, a bad thing to have

1]1=> (Gf (> 3 2)

’foo

bar) <---- bar is not evaluated
;Value: foo called ‘‘Lazy evaluation’’

1 1=> (if (= 3 2)
’foo
bar)
;Unbound variable: bar <---- bar is not evaluated => ERROR



(cond ( <conditionl> <expressionl> )
( <condition2> <expression2> )

( <conditionN-1> <expressionN-1> )
( else <expressionN> ))

1 1=> (cond ( (<2 2) "foo )
( (>22) ’bar ))
;Unspecified return value <--- generally, not a good thing

11=> (cond ( (<2 2) ’foo )

( (>22) ’bar )

( (= 2 2) ’foobar)) <--- not a good thing
;Value: foobar unnecessary evaluation

1 1=> (cond ( (< 2 2) ’foo )

( (> 22) ’bar )

(else ’foobar)) <--- much better now
;Value: foobar

1 1=> (cond ( (> 3 2) ’foo )
( (< 32) bar ) <---- bar is NOT evaluated
( else ’foobar)) Lazy evaluation again
;Value: foo

1 1=> (cond ( (< 3 2) foo ) <-—— foo is NOT evaluated
( (>3 2) ’bar )
(else ’foobar))

;Value: bar

1 ]=> (cond ( (< 3 2) foo ) <—-- foo is NOT evaluated

( (= 3 2) bar ) <--- bar is NOT evaluated

(else foobar)) <--- foobar is evaluated => ERROR
;Unbound variable: foobar...



3 Lists

We reviewed what a PAIR is, what a CAR of a pair is, what a CDR of a pair is. The TA
reminded you of what a LIST is, including nested lists. Some examples:

(cons <argl> <arg2>) ,
where <argl> and <arg2> are arbitrary, but both are necessary

(list <argl> <arg2> ... <argh>) ,

where <argl> <arg2> ... <argN> are arbitrary, neither is necessary
(append <argl> <arg2> ... <argh>)

where <argl> <arg2> ... <argN-1> are lists and <argN> is

arbitrary, neither is necessary
Draw pictures of:

1. () can come from (list)
2. (1) can come from (list 1)

3. (1.2)
Point out the spaces around the
can come from (cons 1 2)

4. (1.(0))

Let them guess it is the same as (1)
can come from (cons 1 () )

w»

ot

. ( () ) can come from (list () ) or from (cons () ())

6. ((12)3()((4)5)6) could come from:
( list (1 2) 3 0 (list (list 4) 5) 6)

| |
could be (1list 1 2) could be ’( (4) 5)

7.((12)3(0(4).5)6)
could come from ( list (list 1 2) 3 () (cons ’(4) 5) 6)

The TA drew solutions on the board. Please make sure you know how to draw these lists as
CONS cells.



4 Recursive procedures

Don’t forget pre- and post- conditions. You will need this for A2.

1. Write a procedure sum-list-large that takes a list of numbers and computes the sum
of all numbers greater than 2 in the list. Return 0 if there are no such numbers in the
input list.

;5 (sum-list-large 1st) return the sum of all numbers that are

;5 greater than 2 in 1st

;; Args: 1st - a list of numbers

;; Pre: 1st is flat list of numbers; lst can be empty

;; Post: none

;;Return: if 1st contains numbers greater than 2, their sum

i ow, O

(define (sum-list-large 1lst)

(cond ((null? 1st) 0)

((> (car 1st) 2) (+ (car 1st) (sum-list-large (cdr 1st))))
(else (sum-list-large (cdr 1st)))))

2. Write a procedure that takes a non-negative integer n and an object as input and
returns a list of n objects.

E.g., (make-list 7 >()) returns (O O O O O O O)
(make-list 3 ’csc324) returns ( csc324 csc324 csc324 )

;; (make-list n object) returns a list of n objects
;; Args: n - the number of times object appears in the result list
HH object - each element of the resulting list
;5 Pre: n - non-negative integer
;; Post: none
;; Return: a list of n objects
(define (make-list n object)
(if (=n 0)
0
(cons object (make-list (- n 1) object)))))



5 More Examples

1. Write a procedure member? that takes an object and a flat list as inputs and tests
whether the object is an element of the input list.

;; (member? elt 1st) tests whether elt appears in 1lst
;; Args: elt - element to be tested for membership
M lst - the list to be tested for containing elt
;3 Pre: 1st - a flat list
33 equal? is appropriate to test for equality of elt with
s elements of 1lst
;; Post: nome
;; Return: true, if elt appears in 1st
s false, otherwise
(define (member? elt 1st)
(cond ( (null? 1st) () )
( (equal? elt (car 1lst)) #t)
( else (member? elt (cdr 1st)))))

2. Write a procedure intersect that computes the intersection of two lists. In other
words, given two lists as arguments, it returns a list of elements contained in both
lists.

Example:
1=> (intersect ’(1 2 3 4) ’(10 2 4 100) )
;Value: (2 4)

1=> (intersect ’(john david) ’(david 2 sky 4) )
;Value: (david)

; (intersect 1lstl 1st2) returns a list of elements contained
;3 in both 1lstl and 1st2
;3 Parameters: 1lstl and 1lst2 are lists
;3 Preconditions: none
;3 Postconditions: none
;3 Return values: a list of elements contained both in 1lstl and 1lst2
(define (intersect 1lstl 1st2)
(cond ((null? 1st1) Q)
((member? (car 1lstl) 1st2)
(cons (car 1stl) (intersect (cdr 1lstl) 1st2)))
(else (intersect (cdr 1stl) 1st2))))



3. Write a procedure union that computes the union of two lists. In other words, given
two lists as arguments, it returns a list of elements contained in either of the two lists,
but does not create duplicates.

Example:
]=> (union ’(1 2 3 4) (10 2 4 100) )
;Value: (1 2 3 4 10 100)

1=> (union ’(john david) °’(david 2 sky 4) )

;Value: (john david 2 sky 4)

; (union 1stl 1st2) returns a list of elements contained

;; in either 1stl or 1st2, but does not create duplicates

;; Parameters: lstl and 1lst2 are lists

;3 Preconditions: none

;3 Postconditions: none

;3 Return values: a list of elements contained both in 1lstl and 1lst2

(define (union 1stl 1st2)

(cond ((null? 1stl) 1st2)

((member? (car 1stl) 1st2) (union (cdr 1lstl) 1st2)))
(else (cons (car 1stl) (union (cdr 1stl) 1st2))))



6 Proofs

We didn’t have time to cover this in tutorial, but please review.
Consider the procedure factorial.

;; (factorial n) returns n!
;5 Args: n - a number, factorial of which is returned
;; Pre: n is an integer, n >=0
;; Post: none
;3 Return: n!
(define (factorial n)
(if (= n 0)
1
(* n (factorial (- n 1)))))

We want to prove that (factorial n) = n! ¥n € N, n > 0. Define P(n) to stand for
(factorial n) = n!. We prove by induction on n:

1. Base case:

(factorial 0) [definition of (factorial n)]
== (if (= 0 0)
1
(x 0 (factorial (- 0 1)))) [evaluation of (= 0 0)]
== (if #t
1
(* 0 (factorial (- 0 1)))) [evaluation of if structure]
== 1 [definition of factoriall
== 0!

We thus conclude that P(0) is true.

2. Inductive step:

Assume P(i) for an arbitrary i € N, ¢ > 0. In other words, we assume that ( factorial i) =
i! for an arbitrary 4 € N, ¢ > 0. This is our inductive hypothesis (IH).

(factorial (i+1)) [definition of (factorial n)]
== (if (= (i+1) 0)
1
(x (i+1) (factorial (- (i+1) 1)))) [arithmetic]
== (if (= i -1)
1
(x (i+1) (factorial i))) [evaluation of (= i -1)

according to IH i>=0]
== (if #f



1

(* (i+1) (factorial i))) [evaluation of if structure]
== (* (i+1) (factorial 1i)) [IH]
== (x (i+1) i!) [definition of factoriall
== (i+1)!

We thus conclude that P(i) = p(i + 1) for any ¢ > 0, i € N.

Thus, by the Principle of (weak) Induction, we conclude that P(n) is true for all n € N,
n > 0. In other words, (factorial n) =n!Vn € N, n > 0.

I realize that the tutorial is long. But I was asked to cover proofs, and there is no way of
not covering the other stuff... Do the best you can. I don’t think I will have time to cover
everything either!



