Syntax of Programming
Languages (cont'd)

(©Diane Horton 200, Suzanne Stevenson 2001.
Modified and put together by Eric Joanis 2002.
Further modified by Sheila Mcllraith 2004, 2005,

2007.
28

Example

Grammar: if statement two slides ago.

Sentence:

if (x odd) then
print "bleep";

One parse tree:

Two derivations:

32

Syntactic Ambiguity
In English

Syntactically ambiguous sentences of English:
e “I saw the dog with the binoculars.”

e “The friends you praise sometimes deserve
it

e “He seemed nice to her.”

Other kinds of ambiguity in English:

Aside: We can often “disambiguate” ambigu-
ous sentences. Question: How?

But we can be wrong.

Example: “I put the box on the table

29

Want: When specifying a programming lan-
guage, we want the grammar to be completely
unambiguous.

Research question: Is there a procedure one

can follow to determine whether or not a given
grammar is ambiguous?

33

In a programming language

Example:

<stmt> --> <assnt-stmt> | <loop-stmt> | <if-stmt>
<if-stmt> --> if <boolean-expr> then <stmt>

| if <boolean-expr> then <stmt> else <stmt>

Example sentence:

if (x odd) then
if (x == 1) then
print "bleep";
else

print "boop";

Exercise: Draw the two parse trees.
30

Notation and Terminology

We say that L(G) is the language generated
by grammar G.

So G is ambiguous if L(G) contains a sentence
which has more than one parse tree, or more
than one leftmost (or canonical) derivation.

Dealing with ambiguity

We have two strategies:

1. Change the language to include delimiters

2. Change the grammar to impose associa-
tivity and precedence

34

Definition: A grammar is ambiguous iff it
generates a sentence for which there are two
or more distinct parse trees

To prove that a grammar is ambiguous, give a
string and two parse trees for it.

A sentence is ambiguous with respect to a
grammar iff that grammar generates two or
more distinct parse trees for the sentence.

Note that having two distinct derivations does
not make a sentence ambiguous. A derivation
corresponds to a traversal through a parse tree,
and one can traverse a single tree in many or-
ders.

31

Changing the language to include
delimiters

Algol 68 if-statement grammar:

<stmt> —-> <assnt-stmt> | <loop-stmt> | <if-stmt>
<if-stmt> --> if <boolean-expr> then <stmt> fi
if <boolean-expr> then <stmt>
else <stmt>
fi

35

Example: A CFG for Arithmetic
Expressions

Grammar 1:

<expn> --> <expn> + <expn> |
<expn> - <expn> |
<expn> * <expn> |
<expn> / <expn> |
<expn> " <expn> |
<identifier> |
<literal>

Example: parse 8 - 3 * 2

36

Precedence

Low Precedence:
Addition + and Subtraction -

Medium Precedence:
Multiplication * and Division /

Higher Precedence:
Exponentiation =

Highest Precedence:
Parenthesized expressions (<expr>)

= Ordered lowest to highest in grammar.

Approach: Introduce a non-terminal for every
precedence level.
40

Changing the language to include
delimiters
Grammar 2:
<expn> --> (<expn>) - (<expn>) |
(<expn>) * (<expn>) |

<identifier> |
<literal>

(8)-((3)x(2)) € L(G)

((8)-(3))*(2) € L(G)
8-3x%2¢L(G)

Grammar 3:

<expn> --> <expn> - <expn> |
<expn> * <expn> |
<identifier> |
<literal> |
(<expr>)

Accepts all expressions, but still ambiguous!

37

Associativity

e Deals with operators of same precedence

e Implicit grouping or parenthesizing

e Left associative: *, /, +, -

e Right associative: ~

Approach: For left-associative operators, put
the recursive term before the nonrecursive term
in a production rule. For right-associative op-
erators, put it after.

41

Changing the grammar to impose
precedence

Grammar 4:

<expn> -->

38

Associativity (cont.)

Examples:

o We want multiplication to be left-associative,
SO we wrote:

<term> -> <term> * <factor>
¢ We want exponentiation to be right-associative,

so might write:

<expo> -> <number> ** <expo> | <number>

42

Grouping in parse tree now refiects
precedence

Example: parse 8 - 3 * 2

39

Dealing with Ambiguity

1. Can't always remove an ambiguity from a
grammar by restructuring productions.

2. When specifying a programming language,
we want the grammar to be completely un-
ambiguous.

3. Aninherently ambiguous language does not
possess an unambiguous grammar.

4. There is no algorithm that can examine an
arbitrary context-free grammar and tell if
it is ambiguous, i.e., detecting ambiguity
in context-free grammars is an undecidable
problem.

43

An Inherently Ambiguous
Language

Suppose we want to generate the following lan-
guage:

L={ac¥|i,jk>1i=jorj=k}

Grammar:

44

Regular vs. Context-Free
Languages

Regular languages are simpler than program-
ming languages (e.g., numbers, identifiers).

e Context-free grammars can describe nested
constructs, matching pairs of items.

e Regular grammars can only describe linear,
not nested, structure.

48

Two parse trees for a’bict

45

Using CFGs for PL Syntax
Some aspects of programming language syntax
can't be specified with CFGs:

e Cannot declare the same identifier twice in
the same block.

e Must declare an identifier before using it.
e Ali,j] is valid only if A is two-dimensional.

e The number of actual parameters must equal
the number of formal parameters.

Other things are awkward to say with CFGs:

e Identifier names must be no more than 50
characters long.

These aspects of a programming language are
usually specified informally, separately from the
formal grammar.

49

Limitations of CFGs

CFGs are not powerful enough to describe some
languages.

Example:

e The language consisting of strings with one
or more a's followed by the same number
of b's then the same number of c's.

Le, {a%W'c |i>1}.
o { a™b"c™d" | myn >1 }.

Research question: Exactly what things can
and cannot be expressed with a CFG?

Research question: Can we write an algo-
rithm which examines an arbitrary CFG and
tells if it is ambiguous or not? — Undecidable!

Research question: Is there an algorithm that
can examine two arbitrary CFGs and determine
if they generate the same language? — Unde-
cidable!

46

Implementations
The Translation Process

1. Lexical Analysis: Converts source code
into sequence of tokens.
We use regular grammars and finite state
automata (recognizers).

2. Syntactic Analysis: Structures tokens
into initial parse tree.
We use CFGs and parsing algorithms.

3. Semantic Analysis: Annotates parse tree
with semantic actions.

4. Code Generation: Produces final ma-
chine code.
50

The Chomsky Hierarchy
Recall: There are several categories of gram-
mar that are more and less expressive, forming
a hierarchy:

Phrase-structure grammars
Context-sensitive grammars

Context-free grammars

Regular grammars

This is called the Chomsky hierarchy, after lin-
guist Noam Chomsky, who did much of the
original research.

a7

Compiler-compilers

compiler-compiler

parse tree

Examples:

e yacc (“yet another compiler-compiler”).
See: man yacc.

e bison (the GNU replacement for yacc)

e JavaCC.

See: http://www.webgain.com/products/java cc

So why does anyone still write compilers by
hand?

51

Parsing Techniques

Two general strategies:

e Bottom-up: Beginning with the leaves (the
sentence to be parsed), work upwards to
the root (the start symbol).

e Top-down: Beginning with the root (the
start symbol), work downwards to the leaves
(the sentence to be parsed).

Recursive descent parsing (top-down)

Every non-terminal is represented by a sub-
program that parses strings generated by that
non-terminal, according to its production rules.

When it needs to parse another non-terminal,
it calls the corresponding subprogram.

Requires: No left-recursion in the productions;
ability to know which RHS applies without look-
ing ahead.

52

Addressing the " no left-recursion”
problem

Problem: Left Recursion

<expr> --> <expr> + <term> | <term>
Possible Solutions:
1. Right Recursion? E.g.,

<expr> --> <term> | <term> + <expr>
2. Left Recursion Removal, E.g.,

<expr> --> <term> {+ <term>}
3. Left Factoring, E.g.,

<expr> —-> <term> [+ <expr>]

The EBNF corresponds to the code you'd write.

53

Other Applications of Formal
Grammars

Identifying strings for an operating system
command

Examples

(Unix commands that use extended RESs):
e 1s s[y-z]*
e grep Se.h syntax.tex

e Scripting languages like awk use regular ex-
pressions.
awk ’/tolkgle/ {print $1}’ syntax.tex

54

Voice recognition

Difficulties:

How can a grammar help?

Problem: Given recorded speech, produce a
string containing the words that were spoken.

55

