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Example

Grammar: if statement two slides ago.

Sentence:

if (x odd) then
print "bleep";

One parse tree:

Two derivations:
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Syntactic Ambiguity
In English

Syntactically ambiguous sentences of English:
e “I saw the dog with the binoculars.”

e “The friends you praise sometimes deserve
it

e “He seemed nice to her.”

Other kinds of ambiguity in English:

Aside: We can often “disambiguate” ambigu-
ous sentences. Question: How?

But we can be wrong.

Example: “I put the box on the table
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Want: When specifying a programming lan-
guage, we want the grammar to be completely
unambiguous.

Research question: Is there a procedure one

can follow to determine whether or not a given
grammar is ambiguous?
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In a programming language

Example:

<stmt> --> <assnt-stmt> | <loop-stmt> | <if-stmt>
<if-stmt> --> if <boolean-expr> then <stmt>

| if <boolean-expr> then <stmt> else <stmt>

Example sentence:

if (x odd) then
if (x == 1) then
print "bleep";
else

print "boop";

Exercise: Draw the two parse trees.
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Notation and Terminology

We say that L(G) is the language generated
by grammar G.

So G is ambiguous if L(G) contains a sentence
which has more than one parse tree, or more
than one leftmost (or canonical) derivation.

Dealing with ambiguity

We have two strategies:

1. Change the language to include delimiters

2. Change the grammar to impose associa-
tivity and precedence
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Definition: A grammar is ambiguous iff it
generates a sentence for which there are two
or more distinct parse trees

To prove that a grammar is ambiguous, give a
string and two parse trees for it.

A sentence is ambiguous with respect to a
grammar iff that grammar generates two or
more distinct parse trees for the sentence.

Note that having two distinct derivations does
not make a sentence ambiguous. A derivation
corresponds to a traversal through a parse tree,
and one can traverse a single tree in many or-
ders.
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Changing the language to include
delimiters

Algol 68 if-statement grammar:

<stmt> —-> <assnt-stmt> | <loop-stmt> | <if-stmt>
<if-stmt> --> if <boolean-expr> then <stmt> fi
if <boolean-expr> then <stmt>
else <stmt>
fi
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Example: A CFG for Arithmetic
Expressions

Grammar 1:

<expn> --> <expn> + <expn> |
<expn> - <expn> |
<expn> * <expn> |
<expn> / <expn> |
<expn> " <expn> |
<identifier> |
<literal>

Example: parse 8 - 3 * 2
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Precedence

Low Precedence:
Addition + and Subtraction -

Medium Precedence:
Multiplication * and Division /

Higher Precedence:
Exponentiation =

Highest Precedence:
Parenthesized expressions ( <expr> )

= Ordered lowest to highest in grammar.

Approach: Introduce a non-terminal for every
precedence level.
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Changing the language to include
delimiters
Grammar 2:
<expn> --> ( <expn> ) - ( <expn> ) |
( <expn> ) * ( <expn> ) |

<identifier> |
<literal>

(8)-((3)x(2)) € L(G)

((8)-(3))*(2) € L(G)
8-3x%2¢L(G)

Grammar 3:

<expn> --> <expn> - <expn> |
<expn> * <expn> |
<identifier> |
<literal> |
( <expr> )

Accepts all expressions, but still ambiguous!

37

Associativity

e Deals with operators of same precedence

e Implicit grouping or parenthesizing

e Left associative: *, /, +, -

e Right associative: ~

Approach: For left-associative operators, put
the recursive term before the nonrecursive term
in a production rule. For right-associative op-
erators, put it after.
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Changing the grammar to impose
precedence

Grammar 4:

<expn> -->
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Associativity (cont.)

Examples:

o We want multiplication to be left-associative,
SO we wrote:

<term> -> <term> * <factor>
¢ We want exponentiation to be right-associative,

so might write:

<expo> -> <number> ** <expo> | <number>
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Grouping in parse tree now refiects
precedence

Example: parse 8 - 3 * 2
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Dealing with Ambiguity

1. Can't always remove an ambiguity from a
grammar by restructuring productions.

2. When specifying a programming language,
we want the grammar to be completely un-
ambiguous.

3. Aninherently ambiguous language does not
possess an unambiguous grammar.

4. There is no algorithm that can examine an
arbitrary context-free grammar and tell if
it is ambiguous, i.e., detecting ambiguity
in context-free grammars is an undecidable
problem.
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An Inherently Ambiguous
Language

Suppose we want to generate the following lan-
guage:

L={ac¥|i,jk>1i=jorj=k}

Grammar:
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Regular vs. Context-Free
Languages

Regular languages are simpler than program-
ming languages (e.g., numbers, identifiers).

e Context-free grammars can describe nested
constructs, matching pairs of items.

e Regular grammars can only describe linear,
not nested, structure.
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Two parse trees for a’bict
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Using CFGs for PL Syntax
Some aspects of programming language syntax
can't be specified with CFGs:

e Cannot declare the same identifier twice in
the same block.

e Must declare an identifier before using it.
e Ali,j] is valid only if A is two-dimensional.

e The number of actual parameters must equal
the number of formal parameters.

Other things are awkward to say with CFGs:

e Identifier names must be no more than 50
characters long.

These aspects of a programming language are
usually specified informally, separately from the
formal grammar.
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Limitations of CFGs

CFGs are not powerful enough to describe some
languages.

Example:

e The language consisting of strings with one
or more a's followed by the same number
of b's then the same number of c's.

Le, {a%W'c |i>1}.
o { a™b"c™d" | myn >1 }.

Research question: Exactly what things can
and cannot be expressed with a CFG?

Research question: Can we write an algo-
rithm which examines an arbitrary CFG and
tells if it is ambiguous or not? — Undecidable!

Research question: Is there an algorithm that
can examine two arbitrary CFGs and determine
if they generate the same language? — Unde-
cidable!
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Implementations
The Translation Process

1. Lexical Analysis: Converts source code
into sequence of tokens.
We use regular grammars and finite state
automata (recognizers).

2. Syntactic Analysis:  Structures tokens
into initial parse tree.
We use CFGs and parsing algorithms.

3. Semantic Analysis: Annotates parse tree
with semantic actions.

4. Code Generation: Produces final ma-
chine code.
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The Chomsky Hierarchy
Recall: There are several categories of gram-
mar that are more and less expressive, forming
a hierarchy:

Phrase-structure grammars
Context-sensitive grammars

Context-free grammars

Regular grammars

This is called the Chomsky hierarchy, after lin-
guist Noam Chomsky, who did much of the
original research.
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Compiler-compilers

compiler-compiler

parse tree

Examples:

e yacc (“yet another compiler-compiler”).
See: man yacc.

e bison (the GNU replacement for yacc)

e JavaCC.

See: http://www.webgain.com/products/java cc

So why does anyone still write compilers by
hand?
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Parsing Techniques

Two general strategies:

e Bottom-up: Beginning with the leaves (the
sentence to be parsed), work upwards to
the root (the start symbol).

e Top-down: Beginning with the root (the
start symbol), work downwards to the leaves
(the sentence to be parsed).

Recursive descent parsing (top-down)

Every non-terminal is represented by a sub-
program that parses strings generated by that
non-terminal, according to its production rules.

When it needs to parse another non-terminal,
it calls the corresponding subprogram.

Requires: No left-recursion in the productions;
ability to know which RHS applies without look-
ing ahead.
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Addressing the " no left-recursion”
problem

Problem: Left Recursion

<expr> --> <expr> + <term> | <term>
Possible Solutions:
1. Right Recursion? E.g.,

<expr> --> <term> | <term> + <expr>
2. Left Recursion Removal, E.g.,

<expr> --> <term> {+ <term>}
3. Left Factoring, E.g.,

<expr> —-> <term> [+ <expr>]

The EBNF corresponds to the code you'd write.
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Other Applications of Formal
Grammars

Identifying strings for an operating system
command

Examples

(Unix commands that use extended RESs):
e 1s s[y-z]*
e grep Se.h syntax.tex

e Scripting languages like awk use regular ex-
pressions.
awk ’/tolkgle/ {print $1}’ syntax.tex
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Voice recognition

Difficulties:

How can a grammar help?

Problem: Given recorded speech, produce a
string containing the words that were spoken.
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