Procedure Activations

Example
Lifetime of procedure:
e Begins when control enters activation .
maliln
(call) procedure P
e Ends when control returns from .
begin
activation
procedure S begin ... end S;
if random(1l) < 1 then P()
Activation Tree: else { SO; QO }
e Shows flow of control from one end P;
activation to another procedure Q begin ... end Q;
e Root: Main program P:
e Edges: Call from one procedure to Q;
another (read left to right) p.
e | eaves: Procedures that call no other end
procedures
26 27

Sample Activation Trees

Activation Trees and Stack Frames

Running a program corresponds to a

traversal of (one of) its activation tree(s).

We can represent the traversal of the tree

using a stack.

Each item on the stack is called a frame.

= The stack of frames not only maintains
the call sequence info, but also keeps track
of the local and non-local environment for

each procedure.

28 29



Content of Stack Frames

e Run-time stack contains frames for main

program and each active procedure.

e Each stack frame includes:

1. Pointer to stack frame of caller
(Control Link)

2. Return address (within caller)

3. Mechanism to find non-local variables
(Access Link)

4. Storage for parameters

. Storage for local variables

6. Storage for temporary and final values

&)

e In a language with first-class functions,

this is more complex.

30

Context of Procedures

Two contexts:

e static placement in source code (same

for each invocation)

e dynamic run-time stack context

(different for each invocation)

Name Resolution: Given the use of a
name (variable or procedure name), which
instance of the entity with that name is

referred to?

= Both static and dynamic contexts play a

role in this determination.
32

Procedure Activation
and Run-time Stack

On a call:

1. Set up stack frame on top of run-time

stack (current context)
2. Do the real work of the procedure body

3. Release stack frame and restore caller’s

context (as new top of stack)

Run-time stack establishes a context for a

procedure invocation

31

Scope

Each use of a name must be associated
with a single entity at run-time (ie, an

offset within a stack frame).

The scope of a declaration of a name is the
part of the program in which a use of that

name refers to that declaration.
The design of a language includes scope

rules for resolving the mapping from the use

of each name to its appropriate declaration.

33



Some Terminology

A name is:

e Vvisible to a piece of code if its scope

includes that piece of code.

e local to a piece of code (block/

procedure/main program) if its

declaration is within that piece of code.

e non-local to a piece of code if it is
visible, but its declaration is not within

that piece of code.

A declaration of a name is hidden if

another declaration supersedes it in scope.

34

Scope Example

program L;
var n: char; {n declared in L}

procedure W;
begin

write(n); {n referenced in W}
end;

procedure D;
var n: char; {n declared in D}

begin
n:= ’D’; {n referenced in D}
1)
end;
begin
n:= ’L’; {n referenced in L}
W;
D
end.

36

Scope Rules

Two choices:

1. Use static context: lexical scope

2. Use dynamic context: dynamic scope

For local names, these are the same.

= Harder for non-local names, and not
necessarily the same for both types of

SCope.

35

Lexical Scope

e Names are associated with declarations

at compile time

e Find the smallest block syntactically
enclosing the reference and containing a
declaration of the name

e Example:

— The reference to n in W is associated

with the declaration of n in L

— The output is?

Benefit: Easy to determine the right
declaration for a name from the text of the

program.
37



Dynamic Scope

e Names are associated with declarations

at run time

e Find the most recent, currently active
run-time stack frame containing a
declaration of the name

e Example:

— The reference to n in W is associated
with two different declarations at two

different times

— The output is?

38

Scoping and the Run-time Stack

Access link shows where to look for

non-local names.

Static Scope:

Access link points to stack frame of

the lexically enclosing procedure

(total no. links to follow determined at

compile time)

Dynamic Scope:

Access link points to stack frame of

caller

40

Dynamic Scope: Pros and Cons

Benefit: reduces need for parameters.

Problems:
e hard to understand behavior from the
text alone.
e renaming variables can have unexpected
results.
e NO protection of one's local variables
from a called procedure.

(Ie, if A calls B, B can modify A's local variables.)

e can be slower to execute.

NOTE: Most languages use lexical scope,
although early interpreted languages used
dynamic scope because of the flexibility and

ease of implementation.
39

Nested Procedures and Static Scope

program
a,b,c : integer; // 1
procedure r
a : integer; // 5
.a...b ... c
end r; // 6
procedure p
c : integer; // 3
procedure s
d,e : integer // 8
...a...b...c ...
r; /79
end s;
r; /] 4
s; /17
end p;
P; // 2

41



Nesting Depth

Nesting depth of a procedure is how many

lexical levels deep it is.
e Main program has nesting depth 1.
e Body of p has nesting depth 2.

e Body of s has nesting depth 3.

Note: Declarations of p and r have nesting
depth 1, but declarations and statements

within p and r have nesting depth 2.

42

Run-Time Stack Trace
Trace through above program, showing

snapshot of run-time stack at points 1, 3,
5, 8, 5 (again).

44

Nesting Depth and Access Links

procedure v

begin /* v */
... .U...; /* use of u */

end; /* v x/

To determine the access link for name u,
follow n — m access links from proc v in
which u is used, where n is the nesting
depth of the body of v and m is the nesting

depth of the declaration of u.
43

Dynamic Scope Example

program
a : integer;
procedure z
a : integer; ...
a = 1;
ys
output a;
end z;
procedure w
a : integer; ...
a := 2;
Y
output a;
end w;
procedure y ...
a := 0;
end y;
a := b;
z;
W;
output a;
end
45



Optimizing Variable Access

Problem: Accessing non-local names

requires following links up the access link

chain.

Solution for lexical scoping only:
Maintain a vector of currently-active

static-chain frames.
e Called the display
e Pioneered in Algol60

e Makes addresses directly accessible

46

Display in Static Example

For example, during execution of proc s:

Using a Display

e If a procedure is at nesting depth n, it
may have to follow n — 1 static links to

find variable addresses

e Display is an array of pointers to stack

frames

e A variable is stored at an offset in the
frame pointed to by the i'th display
element, where i is the nesting level of

procedure where variable was declared

e Display must be maintained along with

run-time stack

47

Maintaining the Display

DJ[1]: Pointer to stack frame for main pgm

D[2]: Pointer to stack frame for procedure p

D[3]: Pointer to stack frame for procedure s

e Address of d is D[3]+Offset+0
e Address of e is D[3]+Offset+1
e Address of ¢ is D[2]4+Offset+0
e Address of a is D[1]4+Offset+0
e Address of b is D[1]4+Offset+1

48 49



Summary:
Procedural Language Design Issues

Components of a procedure
— name

— parameters

— body

— optional result

Parameter passing

— pass by value

— pass by result

— pass by value-result
— pass by reference
— pass by name

Aliasing through parameter passing
Procedure Activations

Stack frames

Lexical scope

Dynamic scope

Implementing scope with stack frames

Displays

50



