CSC 324: Principles of
Programming Languages

Procedural Language Design Issues

©Suzanne Stevenson 2001
Modified by Sheila Mcllraith 2004

Components of a Procedure
1. Name
2. Formal parameters, optionally with types
e parameter (formal parameter)

Local variable whose value is received

from caller
e argument (actual parameter)

The info passed from caller to callee
3. Body, which is a syntactic construct in
the language:

e Block, i.e., declarations and

statements
e EXxpression
e Conjunction of terms

4. Optional result, optionally with a type

3

Procedural Language Design Issues

Procedures: A Control Abstraction

e A block of code that can be called

(imperative)

e A lambda expression (functional)

e A horn clause (logic programming)

Procedures modularize program

structure

Procedure Implementation Issues

The general notion of a procedure leaves a

number of points unspecified:

e How to pass parameters when the

procedure is called

e How to maintain local state and control

information

e How to access non-local names within a

procedure body

Parameter Passing

Matching arguments with parameters:

1. Positional association:

e Arguments are associated with

parameters left to right

2. Keyword association:

e Arguments are given tags, eg:
procedure plot (x,y: real; penup:

boolean)

plot(0.0, 0.0, penup=>true)

plot (penup=>true, x=>0.0, y=>0.0)

Passing Modes

How to treat arguments
(pass-by-x/call-by-x):

1. Pass by value
(Java, C, C++, Pascal, Ada, Scheme, Algol68)

2. Pass by result

(Ada)

3. Pass by value-result

(some Fortrans, Ada)

4. Pass by reference

(Java objects, C++ with &, some Fortrans, Pascal with

var, COBOL)

5. Pass by name
(Algol 60)

Parameter Passing

3. Optional arguments:

e E.g., C printf(...)

{c:

Extra arguments are packaged into

some structure

Passed to special parameter

Example for Passing Modes

array[1..10] of integer;

m,n integer;

procedure r (i , j : integer) begin

m =

n =

iz
J
end r;

2;
3;

r(m,n);

i+ 1;

j+2

// call 1

write m, n ; // print 1

m =

c[1]

cl[2] :

c[3]

2;

1;
4;

_8;

r(m,c[m]); // call 2
write m,c[1],c[2],c[3]; // print 2

Pass by Value

Initial values of parameters copied from

current values of arguments Pass by Result

e Final values of parameters are “lost” at . i
e No initial values of parameters

return time (like local variables).

e Final values of parameters are copied

e Example:
)) back to arguments
at call 1: i=2 j =3
print 1: . .
at call 2: i =2 j=4 e Example: does not work, as written
print 2:
e Benefit: Arguments protected from = For output values only. Used to indicate
changes in procedure. that a parameter is intended solely for

e Problem: Requires copying of values: returning a result.

costs time and space, especially for large
aggregates.

Pass by Result (Example) Problems with Pass by Result

Suppose proc r initializes i and j to O: e Requires copying of values: costs time

e call 1: and space, especially for large

— final values of i and j: aggregates. (Cf. Call by value.)

— m and n are set to:
e \What if the argument is not a variable?

e print 1: E.g., r(1, 2);

e call 2: more problematic

— final values of i and j: e What if a variable is used twice in the

— which element of ¢ is modified, c[1] or argument list?
C[QJ? Egl r(m’ m);
e print 2:

e What about calculations to determine

— If c[1] is modified: locations of arguments?
— If c[2] is modified: E.g., which c[m]?

11 12

Pass by Value-Result

e Initial values of parameters copied from

current values of arguments

e Final values of parameters copied back

to arguments

= Combines functionality of pass by value

and pass by result for same parameter.

13

Further Specifying Pass by Result

With pass by result or pass by value-result,
order of assignments and address

computations is important.

Options:

1. Perform return address computations at
call time:
On second return:
m set to 3; c[2] set to 6

print 2:

15

Pass by Value-Result (Example)

e call 1:
— initial: i = j=
— final: i = j=
— return: m and n set to:

e print 1:

e call 2:
— initial: i = j=
— final: i = =
— return: which element of c is
modified, c[2] or c[3]7

e print 2:

— if c[2] is modified:
— if c[3] is modified:

14

Further Specifying Pass by Result
(cont’'d)

2. Perform return address computations at

return time:
(a) Before any assignments:

On second return: same as above, but
might not be if procedure has

side-effects

(b) Just before that assignment, in order:
On second return:
m set to 3; c[3] set to 6

print 2:

16

Pass by Reference

e Formal parameters are pointers to the

actual parameters (arguments).

e Address computations are performed at

procedure call.

e Changes to the formal parameters are

thus changes to the actual parameters.

17

Pass by Reference

e Benefit: No copying for variables

e Problem: allow redefinition of

expressions and constants?

e Problem: Leads to aliasing

— two or more visible names for same

location

— can cause side effects not visible from

code itself

19

Pass by Reference (Example)

e call 1:
— initial: i = j=
— final: i = j=
— return: m, n are:

e print 1:

e call 2:

— initial: i = j=
— final: i = j=
— return: m, c[2] are:

e print 2:

Aliasing

{ y : integer ;

procedure p (x : integer) begin

X :=x + 1;
X :=x+y
end p;
y = 2;
p(y);
write y

18

20

Aliasing

Pass by Reference:

e The identifiers x and y refer to the same

location in call of p.

e Result of “write y"7?

Pass by Value-Result:

e The identifiers x and y refer to different

locations in call of p.

e Result of “write y"7?

21

Pass by Name

e A “name” for the argument is passed in

to procedure

e Like textual substitution of argument in

procedure

e Thus address computations are done

whenever parameter is used

e Like pass-by-reference for scalar

parameters

23

More Aliasing

{1i, j, k:

procedure q (a, b :

integer ;

integer) begin
a :=1i *x b;
b :=1 % b;

end q;

i=2; j :=3; k :=4;
q(i,j);
q(k,k);

e First call has global-formal aliases:
—aand i

e Second call has formal-formal alias:
—aandb

22

Pass by Name (Example)

e Example:
— call 1: m, n set to:
— print 1:
— call 2: m, c[m] set to:
— print 2:

e Benefit: same as pass by reference

e Problems: Inefficient, requires a thunk:

— essentially a little program is passed

that represents the argument

— evaluates argument in caller’s

environment

24

Summary of Parameter Passing Modes

Pass by value

Pass by result

Pass by value-result

Pass by reference

Pass by name

25

