Recursion:
Five Steps to a Recursive Function

1. Strategy: How to reduce the problem?
2. Header:

e What info needed as input and output?

e Write the function header.
Use a noun phrase for the function name.

3. Spec: Write a method specification in terms of the
parameters and return value.
Include preconditions.

4. Base Cases:

e When is the answer so simple that we know it
without recursing?

e What is the answer in these base case(s)?

e Write code for the base case(s).
5. Recursive Cases:

e Describe the answer in the other case(s) in terms
of the answer on smaller inputs.

e Simplify if possible.

e Write code for the recursive case(s).

45

Recursive Scheme Procedures:
Length

(define (length x)

))
This is called “cdr-recursion.”

Note: There is a built-in length procedure.

a7

Recursive Scheme Procedures:
Sum-N

Parameter: integer n > 0.

Result: sum of integers from 0 to n.

(define (sum-n n)

(cond ()
(else)
)
)
46

Length (cont.)

1 1=> (trace length)

;No value

1 1=> (length ’(a b c))

[Entering #[compound-procedure 5 length]

Args: (a b ¢)]
[Entering #[compound-procedure 5 length]

Args: (b c)]
[Entering #[compound-procedure 5 length]
Args: (c)]

[Entering #[compound-procedure 5 lengthl]
Args: ()]
[o
<== #[compound-procedure 5 length]
Args: O]
[1
<== #[compound-procedure 5 length]
Args: (c)]
2
<== #[compound-procedure 5 length]
Args: (b c)]
[3
<== #[compound-procedure 5 length]
Args: (a b c)]
;Value: 3

48

Recursive Scheme Procedures:
Abs-List

e (abs-list (1 -2 -3 40)) = (1234 0)
e (abs-list ’()) = O

(define (abs-list 1lst)

49

Lists Revisited

Recall the Cons Cell Representation:

The pairor cons cell is the most fundamental of Scheme’s
structured object types.

A list is a sequence of pairs; each pair’s cdr is the next
pair in the sequence.

The cdr of the last pair in a proper list is the empty
list. Otherwise the sequence of pairs forms an improper
list. I.e., an empty list is a proper list, and and any pair
whose cdr is a proper list is a proper list.

An improper list is printed in dotted-pair notation with
a period (dot) preceding the final element of the list. A
pair whose cdr is not a list is often called a dotted pair

51

Recursive Scheme Procedures:
Append

(append ’(1 2) (83 45)) = (12345
(append ’(1 2) (3 (4) 5)) = (1 2 3 (
(append ’() °(1 4 5)) = (1 4 5)
(append ’(1 4 5) *()) = (1 4 5)
(append () °0) = O

)
4) 5)

(define (append x y)

Note: There is a built-in append procedure.

50

Creating lists

quote: (1 (23)) => (1 (23) O)
or (quote (1 (2 3) O))) => (1 (2 3) O)

list: (List 1 °(2 3) () => (1 (2 3) O)

cons: Build it, piece by piece.
(cons 1 (cons (cons 2 (cons 3 ()))

(cons O 0)))

append: Appending lists
(append °(1) °(4 5)) => (1 4 5)
cons vs. list: The procedure cons actually builds pairs,

and there is no reason that the cdr of a pair must be a
list.

The procedure list is similar to cons, except that it
takes an arbitrary number of arguments and always builds
a proper list.

E.g., (1ist ’a ’b ’¢c) — (a b ¢)

52

Testing for Equality

(eq? a b): Returns #t iff a and b are the
same Scheme object. (Don’t use eq? with
numbers!)

(= a b): Returns #t iff a and b are numeri-
cally equal. Pre: a and b must evaluate to
numbers.

(eqv? a b): Similar to eq?, but works for
numbers and characters. More expensive
than eq?, however.

(equal? a b): Returns #t iff a and b have

the same structure and contents. Thus, equal?

recursively tests for equality. The most ex-
pensive equality predicate.

Recommended Reading:

Dybvig §6.1, 2nd ed. (available online), or
Dybvig §6.2, 3rd ed.

Testing for Equality (cont.)

The eq? predicate doesn't work for lists.

Why not?

1. (cons ’a ’()) makes a new list

2. (cons ’a ’()) makes a(nother) new list
3. eq? checks if its two args are the same

4. (eq? (comns ’a ’()) (coms ’a ’())) evaluates
to O (ie, #f)

Lists are stored as pointers to the first element
(car) and the rest of the list (cdr).

Symbols are stored uniquely, so eq? works on
them.

53

Equality Checking for Lists

For lists, need a comparison procedure to check
for the same structure in two lists. How might
you write such a procedure?

(define (myequal? x y)
(or (and (atom? x) (atom? y) (eq? x y))
(and (not (atom? x)) (mot (atom? y))
(myequal? (car x) (car y))
(myequal? (cdr x) (cdr y)))))
(equal? ’a ’a) evaluates to #t
(equal? ’a ’b) evaluates to ()
(equal? ’(a) ’(a)) evaluates to #t
(equal? ’((a)) ’(a)) evaluates to ()

Does this really work? Hint: atoms are num-
bers, does this work for numbers? Play around
with it and with the built-in predicate proce-
dure equal?.

55

54

Other Useful Predicates

(null? a): Returns #t iff a is the empty list
(or #£, depending on the implementation).
(pair? a): Returns #t iff a is a pair, i.e., a
cons cell.

(number? a): Returns #t iff a is a number.
(min list): Returns the minimum of a list
of numbers.

(max list): Returns the maximum of a list
of numbers.

e (even? a): Returns #t iff a is even.

Lots more in Dybvig §6.

56

Recursive Procedures: Counting

(define (atomcount x)
(cond ((null? x) 0)
((atom? x) 1)
(else (+ (atomcount (car x))
(atomcount (cdr x))))))

e (atomcount ’(1 2)) = 2
e (atomcount ’(1 (2 (3)) (5))) = 4:

(at 7(1 (2 (3)) (5)))
(+ (at 1) (at ((2 (3)) (6))))

(+ 1 (+ (at (2 (3))) (at (BN

(+ 1 (+ (+ (at 2) (at ((3)))) (+ (at (5)) (at ()))))

+1 (+ (+1 (+ (at (3)) (at O))) (+ (+ (at 5) (at ())) 0)))
(1 (+ (+1 (+ (+ (at 3) (at) 0)) (+ (+ 1 0) 0)))
F1HEGE1LHEGE1000)) (+1 0N

(+1(+ (+1(+10)) 1))

(+1 (+ (+11) 1))

(+1 (+2 1))

(+13)

4

This is called ‘“car-cdr-recursion.’
57

Efficiency Issues

Solution 1: Bind values to parameters in a
helper procedure.

(define (maximum x y)
(cond ((> x y) x)
(else y)
)

(define (longest-nonzero x y)
(cond ((and (null? x) (null? y)) -1)
(else
(maximum (length x) (length y)))
))

Note: There is a built-in max function.
Note 2: Helper procedures are an important

and useful tool!
59

Efficiency Issues

Problem: Evaluating the same expression twice.
Example:
(define (longest-nonzero x y)
(cond ((and (null? x) (null? y)) -1)
((> (length x) (length y))
(length x))
(else (length y))

))

What can you do if there is no assignment
statement?

58

Efficiency Issues

Solution 2: Use a let or let* construct, to create local
variables and to bind them to expression results. The
scope of these variables is limited to the scope of the
let statement.

(let ((varl exprl)
i;;rn exprn))

body
)

The variables can only be used within the body of the
let.

Evaluation: exprl, ... exprn are evaluated in some un-
defined order, saved, and then assigned to varl,..varn.
In our interpreter, they have the appearance of being
evaluated in parallel.

(let* ((varl expril)

(varn exprn))

body
)
Again, the variables can only be used within the body
of let*.
Evaluation: evaluation and binding is sequential, i.e.,
the evaluation of expri is bound to vari, the evaluation
of expr2 is then bound to var2, etc.

60

Let and let* Example

(define a 100) (define b 200) (define c 300)

(let ((a 5)
(b (+ a a))
(c (+ a b))
(list a b ¢)
)

What does this return? What are a, b, ¢ bound to
now? (Answer: still 100, 200, 300)

(let*x ((a 5)
(b (+ a a))
(c (+ a b))
(list a b ©)
)

What does this return?
Note that let* can be simulated by nested lets.

(let ((a 5))
(let ((b (+ a a)))
(et ((c (+ a b))
(list a b c)
)
)

61

Lambda Expressions Examples

Establishing a procedure as the value of a local variable.

(let ((square-it (lambda (x) (* x x))))
(list (square-it (+ 1 3))
(square-it (* 2 5))
(square-it 7))) => (16 100 49)

square-it is defined only within the scope of the let
statement.

Recall that procedures can have multiple arguments,
and that we can even have procedures as arguments
to procedures.

(let ((double-any (lambda (f x) (f x x))))
(list (double-any + 25)
(double-any cons ’a))) => (100 (a.a))

Dybvig §2.5 is a good reference to this material (avail-
able online). I strongly recommend that you read it.

§4.2 may also be useful.

63

Lambda EXxpressions

We have often been defining procedures using the short-
hand:

(define (square x)

(* x x))

But recall that this is just shorhand for binding the vari-
able square to the lambda expression (* x x).

(define square
(lambda (x)
(* x x)

)

It is often very useful to define procedures without nam-
ing them. These anonymous procedures can be passed
as arguments, returned as arguments, bound to local
variable names using let, etc. We will see further appli-
cations later when we cover higher-order procedures.

62

Lambda Expressions Examples
(cont.)

The following examples are taken from Dybvig §2.5:

(let ((x ’a))
(let ((f (lambda (y) (list x y))))
(f °b))) returns (a b)

Note that x is bound in the outer let. It is a free variable
in the lambda expression. A variable that occurs free in
a lambda expression should be bound by an enclosing
lambda or let expression, unless the variable is (like the
names of primitive procedures) bound at top level, as
we discuss in the following section.

(let ((f (let ((x ’a))
(lambda (y) (cons x y)))))
(let ((x ’i-am-not-a))

(f ’b))) (a . b)

In both cases, the value of x within the procedure named
fis a.

Interestingly, a let expression is just an application of
a lambda expression to a set of argument expressions.
I.e., the following two expressions are equivalent:

(let ((x ’a))
(cons x x))

((lambda (x) (cons x x))
;a)

64

