Functional Programming—
Illustrated in Scheme

References:

e Dybvig, (available online and in the library)
e Sebesta Chapter 15.1-15.6, 15.9, 15.10.

Lisp slides © D. Horton 200. Scheme slides
© S. Stevenson, D. Inkpen 2001. Adapted
for Scheme © E. Joanis 2000, 2002. Mod-
ified, updated and extended © S. Mcliraith
2004, 2005, 2007. Additional slides use mate-
rial taken from © G. Baumgartner 2001.

Pure Functional Languages

Fundamental concept: application of (mathematical)
functions to values

1. Referential transparency: The value of a func-
tion application is independent of the contex t in
which it occurs (i.e., given the same parameters,
it always returns the same results). Or alterna-
tively, a language is referentially transparent if we
may replace one expression with another of equal
value anywhere in a program without changing the
meaning of the program. This is achieved by not
having side effects in programs, e.g.,

value of £(a,b,c) depends only on the values of

f, a, band c

It does not depend on the global state of com-

putation

= all vars in function must be parameters

Main advantage: facilitates reasoning about programs
and applying program transformations.

See http://en.wikipedia.org/wiki/Referential transparency

Scheme on CDF

Invoking: scheme
Exiting: (exit) or Ctrl-D
Loading filename.scm: (load ‘‘filename’’)

or
(load ‘‘filename.scm’’)

Tracing: (trace proc_name)

Transcript:
(transcript-on <my_trans>)
(transcript-off)
saves a transcript of a session to <my_trans>.

Debugger:
-start: (debug)
-help: 7
-go back (read-eval-print level): (restart 1)
or
Ctrl-C Ctrl-C
-quit: q

Pure Functional Languages (cont.)

2. The concept of assignment is not part of

functional programming

e no explicit assignment statements

e variables bound to values only through
the association of actual parameters to
formal parameters in function calls

e function calls have no side effects

e thus no need to consider global state

3. Control flow is governed by function calls
and conditional expressions
= no iteration
= recursion is widely used

Jumping right in

A Scheme procedure

(define increment
(lambda (n)
(+n 1)

or
(define (increment n)
(+ n 1)

A call to the procedure

(increment 21)

Pure Functional Languages (cont.)

4. All storage management is implicit
e needs garbage collection

5. Functions are First Class Values
e Can be returned as the value of an ex-
pression
e Can be passed as an argument
e Can be putin a data structure as a value

e Unnamed functions exist as values

The Spirit of Lisp-like Languages

We shall first define a class of symbolic ex-
pressions in terms of ordered pairs and lists.
Then we shall define five elementary functions
and predicstend build from them by com-
position, conditional expressions and recur-
sive definitions an extensive class of functions
of which we shall give a number of examples.
We shall then show how these functions can
themselves be expressed as symbolic ex-
pressian and we shall give a universal func-
tion apply that allows us to compute from the
expressions for a given function its value for
given arguments. Finally, we shall define some
functions with functions as arguments and
give some useful examples.

McCarthy, J, [1960]. Recursive functions of symbolic
expressions and their computation by machine, Part I.
Comm. ACM 3:4; quoted in Sethi.

A Functional Program

A program includes:
1. A set of function definitions

2. An expression to be evaluated

E.g. in Scheme:
1 1=> (define (abs-val x)
(if (>=x 0)
X

(- x)))
;Value: abs-val
1 1=> (abs-val (- 3 5))

;Value: 2

Jumping Back In
The MIT Scheme Interface

werewolf 1) scheme
Scheme Microcode Version ...

1]=>(+835 16 9)
;Value: 41

1 1=> (define increment (lambda (n) (+ n 1)))
;Value: increment

1 1=> (increment 21)
;Value: 22

1 1=> (load "incr")
;Loading "incr.scm" -- done
;Value: increment-list

1 1=> (increment-list (1 32 7))
;The object 1 is not applicable.
;To continue, call RESTART with an option number:

; (RESTART 2) => Specify a procedure to use in its place.

; (RESTART 1) => Return to read-eval-print level 1.

2 error> (restart 1)
;Abort!

1 1=> (increment-list ’(1 32 7))
;Value 1: (2 33 8) 9

A-Calculus (cont.)

Formal Syntax in BNF
<A-term> ::= <variable>
| A<variable> . <A-term>
| (<A-term> <A-term>)
<variable> ::= x | y | =z

Or more compactly

V | A.E | (E1 E2)
x |y | z |

Where V is an arbitrary variable and E is an
arbitrary A-expression. We call AV the head of
the A-expressions and E the body.

1]=> (trace increment-list)
;Unspecified return value

1 1=> (increment-list ’(1 32 7))

[Entering #[compound-procedure 2 increment-list]
Args: (1 32 7]
[Entering #[compound-procedure 2 increment-list]
Args: (32 7)1
[Entering #[compound-procedure 2 increment-list]
Args: (7)]
[Entering #[compound-procedure 2 increment-list]
Args: O]
[o
<== #[compound-procedure 2 increment-list]
Args: (]
[(e
<== #[compound-procedure 2 increment-list]
Args: (7)1
[(33 8)
<== #[compound-procedure 2 increment-list]
Args: (32 7)]
[(2 33 8
<== #[compound-procedure 2 increment-list]
Args: (1 32 7]
;Value 3: (2 33 8)

1 1=> (exit)
Kill Scheme (y or n)? Yes

Happy Happy Joy Joy. 10
werewolf 2J

Formal Roots: \-Calculus

A-Calculus: Functional Forms

A higher-order function (functional form):
e Takes functions as parameters
e Yields a function as a result
E.g.: Given

f(x) =x+ 2, g(x) = 3 * x
then,

h(x) = £(g(x)) and

h(x) = (3 * x) + 2
h(x) is called a higher-order function.

Types of Functional Forms:
Construction form: E.qg.,

g(x) = x *x, h(x) =2 *x, i(x) =x/ 2
[g,h,i] (4) = (16,8,2)

Apply-to-all form: E.g,
h(x) = x * x
y(h, (2,3,4)) = (4,9,16)

Defined by Alonzo Church, a logician, in
1930s as a computational theory of recur-
sive functions

A-calculus is equivalent in computational
power to Turing machines

Recall: what's a Turing machine?

Turing machines are abstract machines that
emphasize computation as a series of state
transitions driven by symbols on an input
tape (which leads naturally to an impera-
tive style of programming based on assign-
ment)

How is A-calculus different?

— X-calculus emphasizes typed expressions
and functions (which naturally leads to
a functional style of programming).

— No state transitions.

A-Calculus
Is it really Turing Complete?

Can we represent the class of Turing com-
putable functions?

Yes, we can represent:

e Boolean and conditional functions

e Numerical and arithmetic functions

e Data structures: ordered pairs, lists, etc.
e Recursion

But, doing so in A-calculus is tedious;

e Need syntactic sugar to simplify task,

e \-calculus more suitable as an abstract model
of a pregramming language rather than a prac-
tical programming language.

Both Turing machines and-calculus are ide-

alized, mathematical models of computatio.

15

A-Calculus (cont.)

A-calculus is a formal system for defining re-
cursive functions and their properties.

e Expressions are called A-expressions.

e Every \-expression denotes a function.

e A)l-expression consists of 3 kinds of terms:
Variables: z,y,z etc
V denctes arbitrary variables
Abstractions: A\V.E
where V is some variable and E is an-
other A-term.
Applications: (E1 E2) where E1 and E2
are A-terms. Applications are sometimes
called combinations.

Scheme: A Functional
Programming Language

1958: Lisp

1975: Scheme (revised over the years)

1980: Common Lisp ("CL")

1980s: LiSD Machines (e.g, Symbolics, TI Explorer, etc.)

Lisp, Scheme and CL contrasted on following pages.

Some features of Scheme:

e denotational semantics based on the A-calculus.

I.e., the meaning of programming constructs in the language is de-

fined in terms of mathematical functions.

e lexical scoping

Le., all free variables in a A-expression are assigned values at the
time that the \is defined (i.e., evaluated and returned).

e arbitrary ctrl structures w/ continuations.

e functions as first-class values

e automatic garbage collection.

LISP

Functional language developed by John Mc-
Carthy in 1958.

Semantics based on A-Calculus

All functions operate on lists or atomic sym-
bols: (called “S-expressions”)

Only five basic functions: list functions cons,
car, cdr, equal, atom and one conditional
construct: cond

Uses dynamic scoping

Useful for list-processing applications

Programs and data have the same syntac-
tic form: S-expressions

Used in Artificial Intelligence

Literals

Literals are quoted datum or anything that is self~evaluating,

i.e., (quoted) booleans, numbers, characters, strings
quoted lists, quoted vectors are all literals. E.g.,

#t evaluates to #t (true)

() evaluates to () (false)

#f evaluates to () (also false)

5 evaluates to 5

’5 evaluates to 5

1/2 evaluates to 1/2

"Scheme Rocks" evaluates to "Scheme Rocks"
’(a b ¢ d) evaluates to (a b ¢ d) (list)

7(1 (2 3) 4) evaluates to (1 (2 3) 4) (list)

Experiment with the Scheme interpreter!

More on lists scon....

21

SCHEME

Developed in 1975 by G. Sussman and G.
Steele

e A version of LISP

Consistent syntax, small language

e Closer to initial semantics of LISP

Provides basic list processing tools

e Allows functions to be first class objects

Provides support for lazy evaluation

lexical scoping of variables

Procedure Application

The main form of a Scheme expression is the

procedure application. (Terminclogy: in Scheme,

the official name for what you would think of
as a function is procedure.)

(procedure argl arg2 .°' argn)

Evaluation

e Each argument is evaluated.
e The procedure is applied to the results.

Exception: syntactic forms.

Syntactic forms violate the rule—they are built
in to the language to handle cases the rule
above can't handle. Examples: define, if,
cond, lambda---more on this later.

22

COMMON LISP (CL)

Implementations of LISP did not completely
adhere to semantics

Semantics redefined to match implemen-
tations

COMMON LISP has become the standard

Committee-designed language (1980s) to
unify LISP variants

Many defined functions

Simple syntax, large language

Examples

e (- 1) evaluates to -1

e (¥ 5 7) evaluates to 35

e (+1 2 (x 2 3)) evaluates to ¢

o (+ (-63) (/10 2) 2 (* 2 3)) evals to 16
e (cos 0) evaluates to 1

Exercise: run Scheme and try the arithmetic

operators with 0, 1, 2 and 3 arguments, and
figure out how the results make sense.

23

EXxpressions

Common structure for both procedures and data.
In Scheme, functions are called procedures.

When an expression is evaluated it creates a value or list
of values that can be embedded into other expressions.
Therefore programs can be written to manipulate other
programs.

<expression> --> <variable>
<literal>

<procedure call>
<lambda expression>
<conditional>
<assignment>
<derived expression>

See
http://swiss.csail.mit.edu/" jaffer/rbrs_9.html#SEC72

for the full syntax, if you're interested.

20

Variables

Any identifier that is not a syntactic keyword is a vari-
able.

To bind a name to a value:
(define var value)

1 1=> (define a 2)

;Value: a

1 1=> (define b 4)
;Value: b

1 1=> (define c (+ a b))
;Value: ¢

11=>c¢
;Value: 6

1]=> (define a 7)
;Value: a

11=>c¢
;Value: 6

Hey...could define be a procedure?

24

Built-In Procedures

eq?: identity on atoms

null?: is list empty?

car: selects first element of list

cdr: selects rest of list

(cons element 1list): constructs lists by adding
element to front of list

quote Or ’: produces constants

25

Things you should know about
cons, pairs and lists

The pair or cons cell is the most fundamental of Scheme’s
structured object types.

A list is a sequence of pairs; each pair's cdr is the next
pair in the sequence.

The cdr of the last pair in a proper list is the empty
list. Otherwise the sequence of pairs forms an improper
list. I.e., an empty list is a proper list, and and any pair
whose cdr is a proper list is a proper list.

An improper list is printed in dotted-pair notation with
a periocd (dot) preceding the final element of the list. A
pair whose cdr is not a list is often called a dotted pair

cons VS. list: The procedure cons actually builds pairs,
and there is no reason that the cdr of a pair must be a
list, as illustrated on the next page.

The procedure list is similar to cons, except that it

takes an arbitrary number of arguments and always builds
a proper list.

E.g., (list ’a ’b ’¢c) — (a b c)

29

Built-In Procedures

e > () is the empty list

e (car (a b c)) =

e (car ’((a) b (c d))) =

e (cdr ’(a b c)) =

e (cdr ’((a) b (¢ d))) =

car and cdr can break up any list:
— (car (cdr (cdr ’((a) b (c d))))) =

— (caddr ’((a) b (c d)))

cons can construct any list:

— (coms ’a ’()) =

— (cons ’d ’(e)) =

— (cons ’(a b) ’(c d)) =

— (cons ’(a b ¢) ‘((a) b)) =

27

26
More about lists
A list in dotted-pair notation:
(abc) >(@a. (. (c. O
1 1=> (define foo ’(a . (b . (c . ON))
;Value: foo
1 1=> (list? foo)
;Value: #t
1 1=> (pair? foo)
;Value: #t
Proper lists:
O, (a (b (c) d) e
(cons ’a ’(b)) — (a b)
Dotted pairs (improper lists):
(cons ’a ’b) — (a . b)
(car ’(a . b)) — a
(cdr ’(a . b)) > b
(cons ’a (b . <)) > (ab . <
30

Other (Predicate) Procedures

Lists

A simple but powerful general-purpose datatype.
(How many datatypes have we seen so far?)

(1 #t 1)
O
1 (@23 O

Building block: the cons cell.

I

1 0

2 3

Note: Sometimes you'll see NIL. This is 1gISP
notation! In Scheme, we use ().

Predicate procedures return #t or () (i.e., false).

= < > <= >= number comparison ops

Run-time type checking procedures:

— All return Boolean values: #t and ()
— (number? 5) evaluates to #t

— (zero? 0) evaluates to #t

— (symbol? ’sam) evaluates to #t

— (1list? ’(a b)) evaluates to #t

— (pair? ’(a b)) evalutates to #t

— (null? ’()) evalutates to #t

31

Other Predicate Procedures

A few more examples....
o (number? ’sam) evaluates to ()
e (null? ’(a)) evaluates to ()
e (zero? (- 3 3)) evaluates to #t
e (zero? ’(- 3 3)) = type error
e (1ist? (+ 3 4)) evaluates to ()
e (list? ’(+ 3 4)) evaluates to #t

e (pair? ’(a . «c¢)) evaluates to #t

32

READ-EVAL-PRINT Loop

READ: Read input from user:
a procedure application

EVAL.: Evaluate input:
(f argy argp ...argn)
1. evaluate £ to obtain a procedure
2. evaluate each arg; to obtain a value
3. apply procedure to argument values

PRINT: Print resulting value:
the result of the procedure application

33

READ-EVAL-PRINT Loop
Example

READ-EVAL-PRINT Loop

Can also be used to define procedures.

READ: Read input from user:
a symbol definition

EVAL.: Evaluate input:
store function definition

PRINT: Print resulting value:
the symbol defined

Example:

1]=> (define (square x) (* x x))

;Value: square

37

1 1=> (cons ’a (cons ’b ’(c d)))
;Value 1: (a b ¢ d)

1. Read the procedure application
(cons ’a (cons ’b ’(c d)))

2. Evaluate cons to obtain a procedure
3. Evaluate ’a to obtain a itself

4. Evaluate (cons b ’(c d)):
(a) Evaluate cons to obtain a procedure
(b) Evaluate 'b to obtain b itself
(c) Evaluate ’(c d) to obtain (¢ d) itself
(d) Apply the cons procedure to b and (c d)

to obtain (b c d)

5. Apply the cons procedure to a and (b ¢ d)
to obtain (a b ¢ d)

6. Print the result of the application:
(abcad

34

Procedure Definition

Two syntaxes for definition:

1. (define (<fcn-name> <fcn-params>)
<expression>)
(define (square x)

(* x x))

(define (mean x y)
/ (+xy) 2)

2. (define <fcn-name> <fcn-value>)

(define square
(lambda (n) (* n n)))

(define mean
(lambda (x y) (/ (+ x y) 2)))

Lambda procedure syntax enables the creation
of anocnymous procedures. More on this later!
38

Quotes Inhibit Evaluation

;;Same as before:
1 1=> (cons ’a (cons ’b ’(c d)))
;Value 2: (a b c d)

;;Now quote the second argument:
1 1=> (cons ’a ’(cons ’b ’(c d)))
;Value 3: (a cons (quote b) (quote (c d)))

;;Instead, un-quote the first argument:
1]=> (cons a (cons ’b ’(c d)))
;Unbound variable: a

;To continue, call RESTART...

2 error> “C°C

11=>

35

Conditional Execution: if

Quotes vs. Eval

(if <condition> <resultl> <result2>)

1. Evaluate <condition>

2. If the result is a “true value” (i.e., any-
thing but () or #f), then evaluate and re-
turn <resulti>

3. Otherwise, evaluate and return <result2>

(define (abs-val x)
(if (>=x 0) x (- x)))

(define (rest-if-first e 1lst)
(if (eq? e (car 1st)) (cdr 1st) *()))

39

;;Some things evaluate to themselves:
1 1=> (list 1 42 #t #f ())
;Value 4: (1 2 #t O)

;;They can alsc be quoted:
1 1=> (list ’1 42 *#t "#f *())
;Value 5: (1 2 #t O ()

Eval Activates Evaluation

11=>(+12)
;Value 6: (+ 1 2)

;;Eval can be used to evaluate an expression
11=> (eval ’(+ 1 2) °())
;Value 7: 3

36

Conditional Execution: cond

(cond (<conditionl> <resulti>)
(<condition2> <result2>)

(<conditionN> <resultN>)
(else <else-result>) ;optional else
) ;clause
1. Evaluate conditions in order until obtaining
one that returns a true value
2. Evaluate and return the corresponding re-
sult
3. If none of the conditions returns a true
value, evaluate and return <else-result>

40

Conditional Execution: cond

(define (abs-val x)
(cond ((>= x 0) x)
(else (- x))

(define (rest-if-first e lst)
(cond ((null? 1st) *())
((eq? e (car 1st)) (cdr 1lst))
(else (D)

41

Conditional vs. Boolean
Expressions

Write a procedure that takes a parameter x and
returns #t if x is an atom, and false otherwise.
Using cond:

(define (atom? x)
(cond ((symbol? x) ’#t)
((number? x) ’#t)
((char? x) ’#t)
((string? x) ’#t)
((null? x) °#t)
(else ())

42

Conditional vs. Boolean
Expressions

Now write atom? without using cond:

(define (atom? x)
(if (symbol? x) ’#t
(if (number? x) ’#t
(if (char? x) ’#t
(if (string? x) ’#t
(if (null? x) ’#t ())

43

Better atom? procedure

Any list is a pair (dotted pair with CAR and
CDR), except the empty list (which is both list
and atom).

(define (atom? x)
(if (pair? x) () ’#t)
)

(define (atom? x)

(cond ((pair? x) ())
(else ’#t)

44

