Functional Programming—

Illustrated in Scheme

References:

e Dybvig, (available online and in the library)
e Sebesta Chapter 15.1-15.6, 15.9, 15.10.

Lisp slides © D. Horton 2000. Scheme slides
© S. Stevenson, D. Inkpen 2001. Adapted
for Scheme © E. Joanis 2000, 2002. Mod-
ified, updated and extended © S. Mcllraith
2004, 2005, 2007. Additional slides use mate-
rial taken from © G. Baumgartner 2001.

Jumping right in

A Scheme procedure

(define increment
(lambda (n)
(+n1)

or

(define (increment n)

(+ n1)

A call to the procedure

(increment 21)

Scheme on CDF

Invoking: scheme
Exiting: (exit) or Ctrl-D
Loading filename.scm: (load ‘‘filename’’)

or
(load ‘‘filename.scm’’)

Tracing: (trace proc_name)

Transcript:
(transcript-on <my_trans>)
(transcript-off)
saves a transcript of a session to <my_trans>.

Debugger:
-start: (debug)
-help: ?
-go back (read-eval-print level): (restart 1)
or
Ctrl-C Ctrl-C
-quit: q

The Spirit of Lisp-like Languages

We shall first define a class of symbolic ex-
pressions in terms of ordered pairs and lists.
Then we shall define five elementary functions
and predicates, and build from them by com-
position, conditional expressions and recur-
sive definitions an extensive class of functions
of which we shall give a number of examples.
We shall then show how these functions can
themselves be expressed as symbolic ex-
pressions, and we shall give a universal func-
tion apply that allows us to compute from the
expressions for a given function its value for
given arguments. Finally, we shall define some
functions with functions as arguments and
give some useful examples.

McCarthy, J, [1960]. Recursive functions of symbolic
expressions and their computation by machine, Part 1.
Comm. ACM 3:4; quoted in Sethi.

Pure Functional Languages

Fundamental concept: application of (mathematical)
functions to values

1. Referential transparency: The value of a func-
tion application is independent of the contex t in
which it occurs (i.e., given the same parameters,
it always returns the same results). Or alterna-
tively, a language is referentially transparent if we
may replace one expression with another of equal
value anywhere in a program without changing the
meaning of the program. This is achieved by not

having side effects in programs, e.g.,
e value of £(a,b,c) depends only on the values of

f, a, band c
e It does not depend on the global state of com-

putation)
= all vars in function must be parameters

Main advantage: facilitates reasoning about programs
and applying program transformations.

Seehttp://en.wikipedia.org/wiki/Referential transparency

Pure Functional Languages (cont.)

Pure Functional Languages (cont.)

4. All storage management is implicit
e needs garbage collection

5. Functions are First Class Values
e Can be returned as the value of an ex-
pression
e Can be passed as an argument
e Can be put in a data structure as a value

e Unnamed functions exist as values

2. The concept of assignment is not part of

functional programming

e no explicit assignment statements

e variables bound to values only through
the association of actual parameters to
formal parameters in function calls

e function calls have no side effects

e thus no need to consider global state

3. Control flow is governed by function calls
and conditional expressions
= no iteration
= recursion is widely used

A Functional Program

A program includes:
1. A set of function definitions

2. An expression to be evaluated

E.g. in Scheme:
1 1=> (define (abs-val x)
(if (>=x 0)
X

(- x)))

;Value: abs-val

1]=> (abs-val (- 3 5))

;Value: 2

Jumping Back In
The MIT Scheme Interface

werewolf 1% scheme
Scheme Microcode Version ...

11=> (+ 835 16 9)
;Value: 41

1]=> (define increment (lambda (n) (+ n 1)))
;Value: increment

1]=> (increment 21)
;Value: 22

1]=> (load "incr")
;Loading "incr.scm" -- done
;Value: increment-list

1]=> (increment-list (1 32 7))
;The object 1 is not applicable.
;To continue, call RESTART with an option number:

; (RESTART 2) => Specify a procedure to use in its place.

; (RESTART 1) => Return to read-eval-print level 1.

2 error> (restart 1)
sAbort!

1]=> (increment-list (1 32 7))
;Value 1: (2 33 8) 9

Formal Roots:)\-Calculus

e Defined by Alonzo Church, a logician, in
1930s as a computational theory of recur-
sive functions

e)\-calculus is equivalent in computational
power to Turing machines

e Recall: what’s a Turing machine?
Turing machines are abstract machines that
emphasize computation as a series of state
transitions driven by symbols on an input
tape (which leads naturally to an impera-
tive style of programming based on assign-
ment)

e How is A-calculus different?
— X-calculus emphasizes typed expressions
and functions (which naturally leads to
a functional style of programming).
— No state transitions.

11

1]=> (trace increment-list)
;Unspecified return value

1]=> (increment-list (1 32 7))

[Entering #[compound-procedure 2 increment-list]
Args: (1 32 7)]
[Entering #[compound-procedure 2 increment-list]
Args: (32 7)]
[Entering #[compound-procedure 2 increment-list]
Args: (7)]
[Entering #[compound-procedure 2 increment-list]
Args: (1]
Lo
<== #[compound-procedure 2 increment-list]
Args: O]
[(8
<== #[compound-procedure 2 increment-list]
Args: (7)]
[(33 8)
<== #[compound-procedure 2 increment-list]
Args: (32 7)1
[(2 33 8)
<== #[compound-procedure 2 increment-list]
Args: (1 32 7)]
;Value 3: (2 33 8)

1 1=> (exit)
Kill Scheme (y or n)? Yes

Happy Happy Joy Joy. 10
werewolf 2

A-Calculus (cont.)

A-calculus is a formal system for defining re-
cursive functions and their properties.

e Expressions are called A-expressions.

e Every \-expression denotes a function.

e A)-expression consists of 3 kinds of terms:
Variables: z,y, z etc
V denotes arbitrary variables
Abstractions: \V.E
where V is some variable and FE is an-
other A-term.
Applications: (E1 E2) where E1 and E2
are \-terms. Applications are sometimes
called combinations.

12

A-Calculus (cont.) A-Calculus: Functional Forms

A higher-order function (functional form):
e Takes functions as parameters
e Yields a function as a result

Formal Syntax in BNF

<A-term> ::= <variable> E.g.: Given
| A<variable> . <A-term> f(x) =x +2, g(x) = 3 % x
| (KA-term> <A-term>) then,
h(x) = £f(g(x)) and
h(x) = (3 * x) + 2
<variable> ::= x | y | =z h(x) is called a higher-order function.
Or more compactly Types of Functional Forms:
Construction form: E.g.,
E::= V | AV.E | (E1 E2) g(x) =x *xx, h(x) =2 *xx, i(x) =x/ 2
V= x | vy | z | ... [g,h,i] (4) = (16,8,2)
Where V is an arbitrary variable and E is an Apply-to-all form: E.qg,
arbitrary A-expression. We call AV the head of h(x) = x * x
the \-expressions and E the body. y(h, (2,3,4)) = (4,9,16)
13 14

Scheme: A Functional

A-Calculus Programming Language

Is it really Turing Complete?

1958: Lisp

1975: Scheme (revised over the years)

1980: Common Lisp ("CL")

1980s: Lisp Machines (e.g, Symbolics, TI Explorer, etc.)

Can we represent the class of Turing com-
putable functions?

Lisp, Scheme and CL contrasted on following pages.
Yes, we can represent:

e Boolean and conditional functions Some features of Scheme:
e Numerical and arithmetic functions e denotational semantics based on the A-calculus.
e Data structures: ordered pairs, lists, etc. I.e., the meaning of programming constructs in the language is de-
e Recursion fined in terms of mathematical functions.
But, doing so in A-calculus is tedious; e lexical scoping
Ie., all free variables in a \-expression are assigned values at the
e Need SyntaCtiC sugar to Simplify task, time that the \is defined (i.e., evaluated and returned).
e)-calculus more suitable as an abstract model
of a programming language rather than a prac- e arbitrary ctrl structures w/ continuations.

tical programming language.

e functions as first-class values
Both Turing machines and X\-calculus are ide-
alized, mathematical models of computation. e automatic garbage collection.

15 16

LISP SCHEME

Functional language developed by John Mc-

) e Developed in 1975 by G. Sussman and G.
Carthy in 1958.

Steele

Semantics based on A-Calculus

. . . e A version of LISP
All functions operate on lists or atomic sym-

bols: (called “S-expressions”) e Consistent syntax, small language
Only five basic functions: list functions cons,

car, cdr, equal, atom and one conditional
construct: cond

e Closer to initial semantics of LISP

e Provides basic list processing tools

Uses dynamic scoping
e Allows functions to be first class objects
Useful for list-processing applications

Programs and data have the same syntac- e Provides support for /azy evaluation

tic form: S-expressions . . .
P e lexical scoping of variables

Used in Artificial Intelligence

17 18

COMMON LISP (CL) Expressions

i 3 Common structure for both procedures and data.
Implementations of LISP did not completely In Scheme, functions are called procedures.

adhere to semantics When an expression is evaluated it creates a value or list

of values that can be embedded into other expressions.

Semantics redefined to match implemen- Therefore programs can be written to manipulate other
tations programs.

<expression> --> <variable>
COMMON LISP has become the standard | <literal>

| <procedure call>

| <lambda expression>
| <conditional>
I
|
I

Committee-designed language (1980s) to
unify LISP variants

<assignment>
<derived expression>

Many defined functions
See
Simple syntax, large language http://swiss.csail.mit.edu/~jaffer/r5rs_9.html#SEC72

for the full syntax, if you're interested.

19 20

Literals Procedure Application

Literals are quoted datum or anything that is self-evaluating,

i.e., (quoted) booleans, numbers, characters, strings The main form of a Scheme expression is the
quoted lists, quoted vectors are all literals. E.g., procedure application. (Terminology: in Scheme,
the official name for what you would think of

#t evaluates to #t (true) as a function is procedure.)

() evaluates to () (false)

#f evaluates to () (also false) (procedure argl arg2 ... argn)

5 evaluates to 5

’5 evaluates to 5 Evaluation

1/2 evaluates to 1/2

"Scheme Rocks" evaluates to "Scheme Rocks" e Each argument is evaluated.

’(a b c d) evaluates to (a b c @) (list) e The procedure is applied to the results.

’(1 (2 3) 4) evaluates to (1 (2 3) 4) (list)
Exception: syntactic forms.
Experiment with the Scheme interpreter!
Syntactic forms violate the rule—they are built
in to the language to handle cases the rule
above can’'t handle. Examples: define, if,
cond, lambda--—-more on this later.

More on lists soon....

21 22

Examples .
Variables

e (- 1) evaluates to -1

e (x 5 7) evaluates to 35

o (+ 12 (x 2 3)) evaluates to 9

o (+ (-63) (/102) 2 (x 2 3)) evals to 16

e (cos 0) evaluates to 1

Any identifier that is not a syntactic keyword is a vari-
able.

To bind a name to a value:

(define var value)

1]=> (define a 2)

Exercise: run Scheme and try the arithmetic ;Value: a
operators with 0, 1, 2 and 3 arguments, and 1 1=> (define b 4)
;Value: b

figure out how the results make sense.

1]1=> (define ¢ (+ a b))
;Value: c¢

1]1=>c¢
;Value: 6

1 1=> (define a 7)
;Value: a

1]1=>c¢
;Value: 6

Hey...could define be a procedure?

23 24

Built-In Procedures

e eq?: identity on atoms

e null?: is list empty?

e car: selects first element of list

e cdr: selects rest of list

e (cons element list): constructs lists by adding

element to front of list

e quote Or ’: produces constants

25

e car and cdr can break up any list:
— (car (cdr (cdr ’((a) b (c d))))) =

— (caddr ’((a) b (c d)))

e cons can construct any list:

— (cons
— (cons
— (cons
— (cons

‘a ’()) =
’d 2 (e)) =
’(ab) (c) =

(@b c) ‘((d b)) =

27

Built-In Procedures

»() is the empty list

e (car ’(a b ¢c)) =

e (car ’((a) b (c d))) =

(cdr ’(a b c)) =

(cdr ’((a) b (c d))) =

26

Lists

A simple but powerful general-purpose datatype.
(How many datatypes have we seen so far?)

(1 #t 1)
O
123 O

Building block: the cons cell.

[A [y [-F— 0

gl [3—0

Note: Sometimes you'll see NIL. This is 4sISP
notation! In Scheme, we use ().

Things you should know about
cons, pairs and lists

The pair or cons cell is the most fundamental of Scheme’s
structured object types.

A list is a sequence of pairs; each pair’s cdr is the next
pair in the sequence.

The cdr of the last pair in a proper list is the empty
list. Otherwise the sequence of pairs forms an improper
list. I.e., an empty list is a proper list, and and any pair
whose cdr is a proper list is a proper list.

An improper list is printed in dotted-pair notation with
a period (dot) preceding the final element of the list. A
pair whose cdr is not a list is often called a dotted pair

cons VS. list: The procedure cons actually builds pairs,
and there is no reason that the cdr of a pair must be a
list, as illustrated on the next page.

The procedure list is similar to cons, except that it
takes an arbitrary number of arguments and always builds
a proper list.

E.g., (1ist ’a ’b ’c) — (a b ¢)

29

Other (Predicate) Procedures

Predicate procedures return #t or () (i.e., false).

e = < > <= >= number comparison ops

e Run-time type checking procedures:
— All return Boolean values: #t and ()
— (number? 5) evaluates to #t
— (zero? 0) evaluates to #t
— (symbol? ’sam) evaluates to #t
— (list? ’(a b)) evaluates to #t
— (pair? ’(a b)) evalutates to #t

— (null? ’()) evalutates to #t

31

More about lists

A list in dotted-pair notation:
(abc) . . (. O

1 1=> (define foo ’(a . (b . (c . O)N)
;Value: foo

1 1=> (list? foo)
;Value: #t

1 1=> (pair? foo)
;Value: #t

Proper lists:
O, (a (b (c) A e)

(cons ’a (b)) — (a b)
Dotted pairs (improper lists):
(cons ’a ’b) — (a . D)
b)) — a
b)) = b
c)) > (ab . ¢)

(car ’(a .
(cdr ’(a .

(cons ’a (b .

30

Other Predicate Procedures

A few more examples....
e (number? ’sam) evaluates to ()
e (null? ’(a)) evaluates to O
e (zero? (- 3 3)) evaluates to #t
e (zero? ’(- 3 3)) = type error
e (list? (+ 3 4)) evaluates to O
e (list? ’(+ 3 4)) evaluates to #t

e (pair? ’(a . c)) evaluates to #t

32

READ-EVAL-PRINT Loop

READ: Read input from user:
a procedure application

EVAL: Evaluate input:

(f argy argo ...argp)

1. evaluate £ to obtain a procedure

2. evaluate each arg; to obtain a value
3. apply procedure to argument values

PRINT: Print resulting value:
the result of the procedure application

33

READ-EVAL-PRINT Loop
Example

Quotes Inhibit Evaluation

; ;Same as before:
1]=> (cons ’a (cons ’b ’(c d)))
;Value 2: (a b ¢ d)

; ;Now quote the second argument:
1 1=> (comns ’a ’(cons ’b ’(c 4)))
;Value 3: (a cons (quote b) (quote (c d)))

;;Instead, un—quote the first argument:
1 1=> (cons a (cons ’b ’(c d)))
;Unbound variable: a

;To continue, call RESTART...

2 error> “C°C

1 1=>

35

1]=> (cons ’a (cons ’b ’(c d)))
;Value 1: (a b c d)

1. Read the procedure application
(cons ’a (cons ’b ’(c d)))

2. Evaluate cons to obtain a procedure
3. Evaluate ’a to obtain a itself

4. Evaluate (cons ’b ’(c d))
(a) Evaluate cons to obtain a procedure
(b) Evaluate ’b to obtain b itself
(c) Evaluate ’(c d) to obtain (c d) itself
(d) Apply the cons procedure to b and (c d)
to obtain (b ¢ d)

5. Apply the cons procedure to a and (b ¢ d)
to obtain (a b ¢ d)

6. Print the result of the application:
(abcd

34

Quotes vs. Eval

; ;Some things evaluate to themselves:
1 1=> (list 1 42 #t #f ())
;Value 4: (1 2 #t O O)

; ;They can also be quoted:
1 1=> (list 1 °42 ’#t *#f > Q)
;Value 5: (1 2 #t () ()

Eval Activates Evaluation

11=>"(+12)
;Value 6: (+ 1 2)

;3Eval can be used to evaluate an expression

1 1=> (eval ’(+ 1 2) Q)
;Value 7: 3

36

READ-EVAL-PRINT Loop

Can also be used to define procedures.

READ: Read input from user:
a symbol definition

EVAL.: Evaluate input:
store function definition

PRINT: Print resulting value:
the symbol defined

Example:

1]=> (define (square x) (* x x))

;Value: square

37

Procedure Definition

Conditional Execution: if

(if <condition> <resultl> <result2>)

1. Evaluate <condition>

2. If the result is a ‘“true value” (i.e., any-
thing but () or #£), then evaluate and re-
turn <resulti>

3. Otherwise, evaluate and return <result2>

(define (abs-val x)
(if (>=x 0) x (- x)))

(define (rest-if-first e 1lst)
(if (eq? e (car 1st)) (cdr 1st) (D))

39

Two syntaxes for definition:

1. (define (<fcn-name> <fcn-params>)
<expression>)
(define (square x)

(x x %))
(define (mean x y)

/ (+xy) 2))

2. (define <fcn-name> <fcn-value>)

(define square
(lambda (n) (* n n)))

(define mean
(lambda (x y) (/ (+ x y) 2)))

Lambda procedure syntax enables the creation
of anonymous procedures. More on this later!
38

Conditional Execution: cond

(cond (<conditiomnl> <resultil>)
(<condition2> <result2>)

(<conditionN> <resultN>)
(else <else-result>) ;optional else

) ;clause

1. Evaluate conditions in order until obtaining
one that returns a true value

2. Evaluate and return the corresponding re-
sult

3. If none of the conditions returns a true
value, evaluate and return <else-result>

40

Conditional Execution: cond

(define (abs-val x)
(cond ((>= x 0) x)
(else (- x))

(define (rest-if-first e 1st)
(cond ((null? 1st) Q)
((eq? e (car 1st)) (cdr 1st))
(else ()

41

Conditional vs. Boolean
EXxpressions

Now write atom? without using cond:

(define (atom? x)
(if (symbol? x) ’#t
(if (number? x) ’#t
(if (char? x) ’#t
(if (string? x) °’#t
(if (null? x) ’#t ())

43

Conditional vs. Boolean
Expressions

Write a procedure that takes a parameter x and
returns #t if x is an atom, and false otherwise.
Using cond:

(define (atom? x)
(cond ((symbol? x) ’#t)
((number? x) ’#t)
((char? x) ’#t)
((string? x) ’#t)
((null? x) ’#t)
(else O))

42

Better atom? procedure

Any list is a pair (dotted pair with CAR and
CDR), except the empty list (which is both list
and atom).

(define (atom? x)

(if (pair? x) () ’#t)

(define (atom? x)
(cond ((pair? x) ()
(else ’#t)

a4

