Data Structure: the “Structure” Representing a parse tree

Simple grammar:

<np> ::= <det> <adjList> <n>
<adjList> ::= { <adj> }

<det> ::= the | a

<n> ::= child | dog | professor
<adj> ::= small | friendly | noisy

Parse tree:

Representation as a Prolog structure:

64 65

Data Structures - Function Terms

Data Structures are actually just Prolog Func- Function Symbols in Prolog
tion Terms.

In logic, there are two kinds of objects: predicates
Prolog Function terms do not have values. They and functions.

Just act like data structures. e Predicates represent statements about the

world:
Acknowledgements to Tony Bonner for the Func- John hates Mary: hates(john,mary).
tion Symbol slides that follow on functions. John is short: short(john)

(hates is a predicate symbol, short(john) is an
atomic formula)

e Function terms represent objects in the world
the mother of Mary: mother—of(mary)
a rectangle of length 3 and width 4:
rectangle(3,4)
(mother-of (mary) is a function term, rectangle
is a function symbol)

66 67

Function terms do not have values. In Prolog,
they act as data structures:

let p2(X,Y) denote a point in 2-dim space
let p3(X,Y,Z) denote a point in 3-dim space.

Write a Prolog program, SQDIST(Point1,Point2,D),

that returns the square of the distance between
two points. The program should work for 2-
and 3-dim points.

Want:

SQDIST(p2(1,2), p2(3,5), D)
returns D = (3-1)**2 + (5-2)*x*2
= 449 = 13
and
SQDIST(p3(1,1,0), p3(2,2,3), D)
returns D = (1-2)**2 + (1-2)**2 + (0-3)**2
= 1+149 = 11
and
SQDIST(p2(0,0), p3(1,1,1), D)
is undefined
68

Prolog Program:

(1) SQDIST(p2(X1,Y1), p2(X2,Y2), D)
:- XD is X1-X2,
YD is Y1-Y2,
D is XD*XD + YDx*YD.

(2) sSQDIST(p3(X1,Y1,Z1), p3(X2,Y2,Z2), D)
:— XD is X1-X2,
YD is Y1-Y2,
ZD is Z1-Z2,
D is XD*XD + YD*YD + ZD*ZD.

Query: SQDIST(p3(1,1,0),p3(2,2,3),D).
This query unifies with the head of rule (2),
with {x1\1, v1\1, z1\o, X2\2, Y2\2, z2\3}
so, XD is 1-2 = -1

YD is 1-2 = -1

ZD is 0-3 = -3

D is 1+1+9 = 11

So, D=11 is returned

Note: the query does not unify with the head
of rule (1), so only rule (2) is used.
70

Prolog Program:

(1) SQDIST(p2(X1,Y1), p2(X2,Y2), D)
:— XD is X1-X2,
YD is Y1-Y2,
D is XD*XD + YD*YD.

(2) SQDIST(p3(X1,Y1,2z1), p3(X2,Y2,Z2), D)
:~ XD is X1-X2,
YD is Y1-Y2,
ZD is 71-Z2,
D is XD*XD + YD*YD + ZD«ZD.

Query: SQDIST(p2(1,2), p2(3,5), D)
This query unifies with the head of rule (1)
with {Xx1\1, Y1\2, X2\3, Y2\5}
so, XD is X1-X2 = 1-3 = -2
YD is Y1-Y2 = 2-5 = -3
D is (-2)2 + (-3)2 = 13
So, D=13 is returned

Note: the query does not unify with the head

of rule (2), so only rule (1) is used.
69

Prolog Program:

(1) SQDIST(p2(X1,Y1), p2(X2,Y2), D)
;- XD is X1-X2,
YD is Y1-Y2,
D is XD*XD + YD*YD.

(2) SQDIST(p3(X1,Y1,Z1), p3(X2,Y2,Z2), D)
:— XD is X1-X2,
YD is Y1-Y2,
ZD is Z1-7Z2,
D is XD*XD + YD*YD + ZD*ZD.

Query: SQDIST(p2(0,0), p3(1,1,1), D).
Note: this query does not unify with any rule,

so Prolog simply returns no, i.e., no answers
for D.

71

Returning Function Terms
as Answers

e.g., given a point, p2(X,Y), return a new point
with double the coordinates. e.g.,

Query: double(p2(3,4),P)

Answer:P = p2(6,8).

Prolog Program:
double(p2(X1,Y1), p2(X2,Y2))
- X2 is 2xX1,
Y2 is 2xY1.

In Plain English: if X2 = 2xX1 and Y2 = 2xY1,
then the double of p2(X1,Y1) is p2(X2,Y2).

An equivalent program using :
double(p2(X1,Y1), P)
:— X2 is 2xX1, Y2 is 2xY1,
P = p2(X2,Y2).
Here, "=" is being used to assign a value to

cedural thinking.
72

Recursion with Function Symbols

Example: Electrical circuits

5 6
e Two resistors in series, with resistances R
and R», respectively.
e Total resistance of the circuit is 5+ 6 = 11.

e Can represent the circuit as a function term:
series(5,6).

2
— W

3

A

e Two resistors in parallel.
e Total resistance of the circuit is g_f_g =1.2

e Represent the circuit as a function term:

par(2,3).
74

Sample Execution

Prolog Program:

double(p2(X1,Y1), p2(X2,Y2))
- X2 is 2xX1,
Y2 is 2x*Y1.
Query: double(p2(3,4),P)

The query unifies with the head of the rule,
where the mgu is

{X1\3, Y1\4, P\p2(X2,Y2)}
The body of the rule then evaluates:

X2 is 2xX1, ie., 6
Y2 is 2x%Y1, ie.,, 8

The mgu becomes {Xx1\3, Y1\4, P\p2(6,8)}.

So, the answer is P = p2(6,8).
73

More Complex Circuits

2 3
VWA VW
3
VW
par(3, series(2,3))
4 2
W\ VW
| 5 3 L
W\ VW

series(par(4,5), par(2,3))

75

Problem: Solution
Write a Prolog program that computes the

]) . (1) resistance(R,R) :- number(R).
total resistance of any circuit.

(2) resistance(series(C1,C2), R)
For example, :— resistance(C1, R1),
resistance(C2, R2),

R is R1+R2.
Query: resistance(series(1,2), R)

Answer: R = 1+2 = 3 (3) resistance(par(C1,C2), R)

:— resistance(C1,R1),
resistance(C2,R2),
Query: resistance(par(2,3), R) R is (R1¥R2)/(R1+R2).
Answer: R = (2%3)/(2+3) = 6/5 = 1.2
Sample Query:
resistance(series(3,par(6,3)), TR)

Query: resistance(series(3,par(2,3)), R) i.e., compute the total resistance, TR, of the
Answer: R =3 + 1.2 = 4.2 following circuit:
6
3 VW
Query: resistance(3, R) ____\/VV____ 3 -
Answer: R = 3 W\/
76 77

ISVHd ONIANIMNN
~—

N
10 &
K2} iﬁ Execution of Prolog Programs
& Ee&
o =%
& NS e es . o
n 0 D e Unification: (variable bindings)
"J': o .2§é Specializes general rules to apply to a spe-
- N
- § x =2 cific problem.
a4 —_ —
n o S
% g) % e Backward Chaining/
™ -
= g S3 Top-Down Reasoning/
B — -Di i .
E_,_m > 7 S, Goal-Directed Reasoning:
% < @ = Reduces a goal to one or more subgoals.
o E’ = far
§sEa &8s
g %% o %% © e Backtracking:
S 5 < Systematically searches for all possible so-
% o -% o lutions that can be obtained via unification

______________ P and backchaining.
ISVHA (ONIANIM) AAISHNOTY

78 79

Unification

Two atomic formulas with distinct variables
unify if and only if they can be made syntac-
tically identical by replacing their variables by

other terms. For example,
e loves(bob,Y) unifies with loves(bob,sue)

by replacing Y by sue.

e loves(bob,Y) unifies with loves(X,santa)
by replacing Y by santa and X by bob.
Both formulas become loves(bob,santa).
Formally, we use the substitution

{Y\santa, X\bob}

which is called a unifier of loves(bob,Y)

and loves(X,santa).
e Note that loves(bob,X) does not unify with

loves(tony,Y), since no substitution for X,Y
can make the two formulae syntactically
equal.

80

Unification (cont.)
Examples:

p(X,X) unifies with p(b,b) and with p(c,c), but
not with p(b,c).

p(X,b) unifies with p(Y,Y) with unifier X b,Y
b to become p(b,b).

p(X,Z,Z) unifies with P(Y,Y,b) with unifier X
b,Y b,Z b to become p(b,b,b).

p(X,b,X) does not unify with p(Y,Y,c).

82

Rules of Unification
A constant unifies only with itself.

Two structures unify iff they have the same
name, number of arguments, and all the argu-
ments unify.

A variable unifies with anything. If the other
thing has a value, the variable is instantiated.
Otherwise, the two are associated in a way
such that if one gets a value so does the other.

Unification requires all instances of the same
variabe in a rule to get the same value

All rules searched, if requested by successive
typing of ;"

81

Unification with Function Terms
Prolog uses unification to compute its answers.
e.g., Given the database:

owns (john, car(red,corvette))

owns (john, cat(black,siamese,sylvester))

owns (elvis, copyright(song,"jailhouse rock"))
owns (tolstoy, copyright(book,"war and peace"))
owns(elvis, car(red,cadillac))

the query owns(Who,car (red,Make))
unifies with the following database facts:

e owns(elvis,car(red,cadillac)),
with unifier {Who\elvis, Make\cadillac}

e owns(john,car(red,corvette)),
with unifier {Who\john, Make\corvette}

83

Abstract Examples A Negative Example

p(b,f(X,X),c) does not unify with p(U,£(U,V),V).
Reason:

e To make the first arguments equal,
e p(£(X),X) unifies with p(Y,b) we must replace U by b.
with unifier {X\b, Y\f(b)}
to become p(f(b),b).
e To make the third arguments equal,

we must replace V by c.

e These substitutions convert
p(U,£(U,V),V) into p(b,f(b,c),c).

e p(b,f(X,Y),c) unifies with p(U,£(U,V),V)

with unifier {X\b, Y\c, U\b, V\c} e However, no substitution for X will convert
to become p(b,£(b,c),c). p(b,£(X,X),c) into p(b,£(b,c),c).

84 85

Another Kind of Most General Unifiers (MGU)

Negative Example The atomic formulas p(X,£(Y)) and p(g(U),V)

p(£(X),X) does not unify with p(Y,Y). have infinitely many unifiers. e.g.,
Reason: e {X\g(a), Y\b, U\a, V\f(b)}
unifies them to give p(g(a),f(b)).
e Any unification would require that
fX =Y and Y=X o {X\g(c), Y\d, U\c, V\f(d)}
unifies them to give p(g(c),£(d)).

e But no substitution can make . .
However, these unifiers are more specific than

f(X) =X
necessary.
e For example, The most general unifier (mgu) is
f(a) # a, using {X\a} {X\g(U), V\£(¥)}

. It unifies the two atomic formulas to give p(g(U),£(Y))
f(b) # b, using {X\b}
f(g(a)) # g(a), using {X\g(a)} Ever;_/ other unifier results in an atomic formula
of this form.
f(£(c)) # £(c), using {X\f(c)}
otc The mgu uses variables to fill in as few details
' as possible.

86 87

MGU Example

fW, 9(2), 7)
f(X, Y, (X))

To unify these two formulas, we need

9(Z)
h(X)
w

N

Working backwards from W, we get

Y = g(Z)=g(h(W)
Z = h(X)=h(W)
X = W

So, the mgu is
{X\W, Y\g(h(W)), Z\h(W)}

88

Syntax of Substitutions

Formally, a substitution is a set

{vl\tla) ’Un\tn}

where the w;'s are distinct variable names
and the ¢t;'s are terms that do not use

any of the v;'s.

More MGU Examples

Positive Examples:

{X\a, Y\b, Z\f(a,b)}
{X\wW, Y\f(W,V,a), Z\W}

Negative Examples:
{f(X\a}
{X\a, X\b}
{x\f(x)}
{(X\f(Y), Y\g(9)}

90

(31 to MGU
f(X,a) f(a,Y)
f(h(X,a),b) | f(h(g(a,b),Y),b)
a(a,w,h(X)) | 9(Y,f(Y,2),2)
f(X,9(X),Z2) | f(Z,Y,h(Y))
f(X,h(b,X)) | f(g9(P,a),h(b,9(Q,Q)))

89

