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Jumping Right In

Suppose we state these facts:

male(albert) . parent (albert,edward) .
female(alice). parent (victoria,edward) .
male (edward) . parent (albert,alice).
female(victoria) . parent (victoria,alice).

We can then make queries:

?- male(albert).
Yes

7- male(victoria).
No

7- female(Person).
Person = alice;
Person = victoria;
No

?- parent(Person, edward) .
Person = albert;

Person = victoria;

No

?- parent(Person, edward), female(Person).
Person = victoria;
No

Logic Programming and Prolog

Logic programming languages are not proce-
dural or functional.

e Specify relations between objects

— larger(3,2)

— father(tom, jane)

e Separate logic from control:

— Programmer declares what facts and relations
are true.

— System determines how to use facts to solve
problems.

— System instantiates variables in order to make
relations true!

e Computation engine: theorem-proving and recur-
sion (Unification, Resolution, Backward Chaining,
Backtracking)

— Higher-level than imperative languages

We can also state rules, such as this one:

sibling(X, Y) :- parent(P, X),
parent (P, Y).

Then the queries become more interesting:

7- sibling(albert, victoria).
No

?- sibling(edward, Sib).

Sib = edward;
Sib = alice;
Sib = edward;
Sib = alice;
No



Prolog vs Scheme Logic Programming

In Scheme, we program with functions (" pro- A program consists of facts and rules.

cedures'’). ] ] )
e Running a program means asking queries.
e A function’s arguments are different from

the function's value. e The language tries to find one way

e Give a single Scheme function, we can only (or more) to prove that the query is true.
k ki f ion: . . .
ask one kind of question e This may have the side effect of freezing
Here are the argument values; tell me variable values.

hat is the fi ion’ lue. .
what is the function’s value e The language determines how to do all of

this, not the program.
In Prolog, we program with relations.
e How does the language do it? Using unifi-

e There is no bias; all arguments are the ) . i
cation, resolution, and backtracking.

same.

e Given a single Prolog predicate, we can ask
many kinds of question:

Here are some of the argument val-
ues; tell me what the others have to
be in order to make a true statement.
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The swi Interface on cdf - trace.
Yes
cdfy 1s
family.pl [trace]
cdfl pl [trace] 7- parent(Person, edward).

Welcome to SWI-Prolog (Multi-threaded, Version 5.2.11)
Copyright (c) 1990-2003 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free soi
and you are welcome to redistribute it under certain conditior
Please visit http://www.swi-prolog.org for details.

[trace] 7?- parent(Person, edward).
Call: (7) parent(_G283, edward) ? creep <- CR to continue
Exit: (7) parent(albert, edward) ? creep

Person = albert ;
Redo: (7) parent(_G283, edward) ? creep

For help, use ?- help(Topic). or ?- apropos(Word). Exit: (7) parent(victoria, edward) 7 creep

?- [family’]. <———--——---——- load file family.pl Person = victoria
% family compiled 0.00 sec, 5,264 bytes
Yes Yes

[debug]l 7-

?- parent(Person, edward).

(0) Call: parent(_57,edward) 7

Person = albert;  <——————=—-—- ";" to get more (0) Exit: parent(albert,edward) 7
Person = victoria; -
o Person = albert;

(0) Redo: parent(albert,edward) ?
(0) Exit: parent(victoria,edward) 7
Person = victoria
Yes
[trace]

7- parent (Person, edward).

Person = albert —m—mmmm———— "a", CR, space to break
Yes



?- notrace.
Yes

7- parent(Person, edward).
Person = albert;

Person = victoria;
No

?- halt.
cdfy,

Some Prolog Syntax

Lexical Rules:
e Variables are capitalized.
e Constants begin with a lower case letter.

e Predicate names begin with a lower case
letter.

Simplified Grammar:

<clause> ::= <pred> |

<pred> :- <pred> { , <pred> } .

<pred> ::= <pname>‘(’ <term> { , <term> } )’

<term> ::= <int> | <atom> | <var>

Note: No blank between predicate name and
opening bracket.
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cdfy pl
Welcome to SWI-Prolog (Multi-threaded, Version 5.2.11)

For help, use ?- help(Topic). or ?- apropos(Word).
?7- [family].

[family loaded]

Yes

7- parent(Person, edward).

Person = albert;

Person = victoria;
No

--- edit family.P and remove parent (albert,edward) . —---
?- [family’].

% family compiled 0.00 sec, 5,200 bytes
Yes

?- parent (Person, edward).

Person = victoria;
No

?- halt.
cdf

Prolog Queries

A query is a proposed fact that is to be proven.

e If the query has no variables, returns yes/no.

e If the query has variables, returns appro-
priate values of variables (called a substi-
tution).
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Horn Clauses Horn Clause Terminology
(Rules)

e Horn Clause = Clause

A Horn Clause is: ¢+ hi Aho AhgA...ANhy

Consequent = Goal = Head

Antecedents = Subgoals = Tail
e Antecedents: conjunction of zero or more

conditions which are atomic formulae in e Horn Clause with No Tail = Fact

predicate logic e Horn Clause with Tail = Rule

. . . In Prolog, a Horn clause
e Consequent: an atomic formula in predi-

cate logic chiA...Ahy

is written
Meaning of a Horn clause: ¢mhn
Syntax elements: - ,

e ‘“The consequent is true if the antecedents

are all true”
e c is true if hy, ho, hz, ..., and hy, are all
true
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Prolog Horn Clause Examples Meaning of Prolog Rules

Without Variables

A Horn clause with no tail:
A prolog rule must have this form:
male(albert). ]
c .—aj, an, as, Ty, an.
Le., a fact: albert is a male dependent on no which means in logic:
other conditions a1 AasAagA---Aan — c.

A Horn clause with a tail:

father(albert,edward):- o
male(albert), parent(albert,edward). Restrictions

e There can be zero or more antecedents,
but they are conjoined; we cannot disjoin
them.

I.e., a rule: albert is the father of edward if al-
bert is male and albert is a parent of edward’s.

e There cannot be more than 1 consequent.
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Bending the Restrictions
Getting disjoined antecedents
Example: a1 Vao Va3V — c
Solution:
Getting more than 1 consequent, conjoined
Example: a1 Aas> Aaz — c1 Aco.

Solution:

Getter more than 1 consequent, disjoined
Example: a1 Aas Aaz — c1 V.

Solution:
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Logic Review

18

Why Can’t We
Disjoin Consequents?

Why did the designers of Prolog disallow this?

17

Horn Clauses with Variables

Variables may appear in the antecedents and
consequent of a Horn clause:

° C(Xl,. .. ,Xn) - h(Xl,. .. ,Xn).

“For all values of Xi,...,Xyn, the formula
c(Xq,...,Xp) is trueif the formula h(Xq,. ..
is true”

° C(Xl,. .. ,Xn) - h(Xl,. . ,Xn,Yl,. .. va)-

“For all values of Xq,...,Xp, the formula
c(X1q,...,Xp) is true if there exist values of

Y1q,...,YEsuch that the formula h(Xy,...,Xpn,Yq,.

is true”
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Meaning of Prolog Rules Sample run
With Variables cdfY pl

Welcome to SWI-Prolog (Multi-threaded, Version 5.2.11)...

Example: ?- [’family’].

. Warning: (./family.pl:50):
isaMother (X) = female(X) 3 parent (X, Y) . Singleton variables: [Y]
% family compiled 0.00 sec, 5,528 bytes

Logic: ?- isaMother(X).
parent(X,Y) A female(X) D isaMother(X). X = victoria;
X = victoria;
No

But this is meaningless without quantifiers for
the variables.

The rule

A Prolog rule of this form (n>0,m < n,k > o):
(X1, Xn) t— a(Xq,+ - Xm, Y1, Yp).

means:
VX1, Xn
[3Y1,---Y}c [G'(Xla"'Xmayla"'Yk)Dc(Xla"'Xn)] ]
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