LOGIC PROGRAMMING
AND PROLOG

Reading:
e Sebesta, chapter 16

References:

e Clocksin and Mellish, Ch. 1-4, 6, 8 (on
hold in library)

e Online Resources (tutorials, SWI page, etc.)

Some material ©Diane Horton 2000,
Suzanne Stevenson 2001, and
Sheila Mcllraith 2004.

Jumping Right In

Suppose we state these facts:

male(albert) . parent (albert,edward) .
female(alice). parent (victoria,edward) .
male (edward) . parent (albert,alice).
female(victoria) . parent (victoria,alice).

We can then make queries:

?- male(albert).
Yes

7- male(victoria).
No

7- female(Person).
Person = alice;
Person = victoria;
No

?- parent(Person, edward) .
Person = albert;

Person = victoria;

No

?- parent(Person, edward), female(Person).
Person = victoria;
No

Logic Programming and Prolog

Logic programming languages are not proce-
dural or functional.

e Specify relations between objects

— larger(3,2)

— father(tom, jane)

e Separate logic from control:

— Programmer declares what facts and relations
are true.

— System determines how to use facts to solve
problems.

— System instantiates variables in order to make
relations true!

e Computation engine: theorem-proving and recur-
sion (Unification, Resolution, Backward Chaining,
Backtracking)

— Higher-level than imperative languages

We can also state rules, such as this one:

sibling(X, Y) :- parent(P, X),
parent (P, Y).

Then the queries become more interesting:

7- sibling(albert, victoria).
No

?- sibling(edward, Sib).

Sib = edward;
Sib = alice;
Sib = edward;
Sib = alice;
No

Prolog vs Scheme Logic Programming

In Scheme, we program with functions (" pro- A program consists of facts and rules.

cedures'’).]])
e Running a program means asking queries.
e A function’s arguments are different from

the function's value. e The language tries to find one way

e Give a single Scheme function, we can only (or more) to prove that the query is true.
k ki f ion: . . .
ask one kind of question e This may have the side effect of freezing
Here are the argument values; tell me variable values.

hat is the fi ion’ lue. .
what is the function’s value e The language determines how to do all of

this, not the program.
In Prolog, we program with relations.
e How does the language do it? Using unifi-

e There is no bias; all arguments are the) . i
cation, resolution, and backtracking.

same.

e Given a single Prolog predicate, we can ask
many kinds of question:

Here are some of the argument val-
ues; tell me what the others have to
be in order to make a true statement.

5 6
The swi Interface on cdf - trace.
Yes
cdfy 1s
family.pl [trace]
cdfl pl [trace] 7- parent(Person, edward).

Welcome to SWI-Prolog (Multi-threaded, Version 5.2.11)
Copyright (c) 1990-2003 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free soi
and you are welcome to redistribute it under certain conditior
Please visit http://www.swi-prolog.org for details.

[trace] 7?- parent(Person, edward).
Call: (7) parent(_G283, edward) ? creep <- CR to continue
Exit: (7) parent(albert, edward) ? creep

Person = albert ;
Redo: (7) parent(_G283, edward) ? creep

For help, use ?- help(Topic). or ?- apropos(Word). Exit: (7) parent(victoria, edward) 7 creep

?- [family’]. <———--——---——- load file family.pl Person = victoria
% family compiled 0.00 sec, 5,264 bytes
Yes Yes

[debug]l 7-

?- parent(Person, edward).

(0) Call: parent(_57,edward) 7

Person = albert; <——————=—-—- ";" to get more (0) Exit: parent(albert,edward) 7
Person = victoria; -
o Person = albert;

(0) Redo: parent(albert,edward) ?
(0) Exit: parent(victoria,edward) 7
Person = victoria
Yes
[trace]

7- parent (Person, edward).

Person = albert —m—mmmm———— "a", CR, space to break
Yes

?- notrace.
Yes

7- parent(Person, edward).
Person = albert;

Person = victoria;
No

?- halt.
cdfy,

Some Prolog Syntax

Lexical Rules:
e Variables are capitalized.
e Constants begin with a lower case letter.

e Predicate names begin with a lower case
letter.

Simplified Grammar:

<clause> ::= <pred> |

<pred> :- <pred> { , <pred> } .

<pred> ::= <pname>‘(’ <term> { , <term> })’

<term> ::= <int> | <atom> | <var>

Note: No blank between predicate name and
opening bracket.
10

cdfy pl
Welcome to SWI-Prolog (Multi-threaded, Version 5.2.11)

For help, use ?- help(Topic). or ?- apropos(Word).
?7- [family].

[family loaded]

Yes

7- parent(Person, edward).

Person = albert;

Person = victoria;
No

--- edit family.P and remove parent (albert,edward) . —---
?- [family’].

% family compiled 0.00 sec, 5,200 bytes
Yes

?- parent (Person, edward).

Person = victoria;
No

?- halt.
cdf

Prolog Queries

A query is a proposed fact that is to be proven.

e If the query has no variables, returns yes/no.

e If the query has variables, returns appro-
priate values of variables (called a substi-
tution).

11

Horn Clauses Horn Clause Terminology
(Rules)

e Horn Clause = Clause

A Horn Clause is: ¢+ hi Aho AhgA...ANhy

Consequent = Goal = Head

Antecedents = Subgoals = Tail
e Antecedents: conjunction of zero or more

conditions which are atomic formulae in e Horn Clause with No Tail = Fact

predicate logic e Horn Clause with Tail = Rule

. . . In Prolog, a Horn clause
e Consequent: an atomic formula in predi-

cate logic chiA...Ahy

is written
Meaning of a Horn clause: ¢mhn
Syntax elements: - ,

e ‘“The consequent is true if the antecedents

are all true”
e c is true if hy, ho, hz, ..., and hy, are all
true
12 13
Prolog Horn Clause Examples Meaning of Prolog Rules

Without Variables

A Horn clause with no tail:
A prolog rule must have this form:
male(albert).]
c .—aj, an, as, Ty, an.
Le., a fact: albert is a male dependent on no which means in logic:
other conditions a1 AasAagA---Aan — c.

A Horn clause with a tail:

father(albert,edward):- o
male(albert), parent(albert,edward). Restrictions

e There can be zero or more antecedents,
but they are conjoined; we cannot disjoin
them.

I.e., a rule: albert is the father of edward if al-
bert is male and albert is a parent of edward’s.

e There cannot be more than 1 consequent.

14 15

Bending the Restrictions
Getting disjoined antecedents
Example: a1 Vao Va3V — c
Solution:
Getting more than 1 consequent, conjoined
Example: a1 Aas> Aaz — c1 Aco.

Solution:

Getter more than 1 consequent, disjoined
Example: a1 Aas Aaz — c1 V.

Solution:

16

Logic Review

18

Why Can’t We
Disjoin Consequents?

Why did the designers of Prolog disallow this?

17

Horn Clauses with Variables

Variables may appear in the antecedents and
consequent of a Horn clause:

° C(Xl,. .. ,Xn) - h(Xl,. .. ,Xn).

“For all values of Xi,...,Xyn, the formula
c(Xq,...,Xp) is trueif the formula h(Xq,. ..
is true”

° C(Xl,. .. ,Xn) - h(Xl,. . ,Xn,Yl,. .. va)-

“For all values of Xq,...,Xp, the formula
c(X1q,...,Xp) is true if there exist values of

Y1q,...,YEsuch that the formula h(Xy,...,Xpn,Yq,.

is true”

19

Meaning of Prolog Rules Sample run
With Variables cdfY pl

Welcome to SWI-Prolog (Multi-threaded, Version 5.2.11)...

Example: ?- [’family’].

. Warning: (./family.pl:50):
isaMother (X) = female(X) 3 parent (X, Y) . Singleton variables: [Y]
% family compiled 0.00 sec, 5,528 bytes

Logic: ?- isaMother(X).
parent(X,Y) A female(X) D isaMother(X). X = victoria;
X = victoria;
No

But this is meaningless without quantifiers for
the variables.

The rule

A Prolog rule of this form (n>0,m < n,k > o):
(X1, Xn) t— a(Xq,+ - Xm, Y1, Yp).

means:
VX1, Xn
[3Y1,---Y}c [G'(Xla"'Xmayla"'Yk)Dc(Xla"'Xn)]]

20 21

