ML Lectures (continued)
Winter 2007

ML
Polymorphism
Greek: poly = many, morph = form

Definitions:
Polymorphism:
dictionary.com: the capability of assuming different
forms; the capability of widely varying in form. The
occurrence of different forms, stages, or types
Software: a value/variable can belong to multiple
types
Monomorphism:
Dictionary.com: having only one form, same
genotype...
Software: every value/variable belongs to exactly one
type

Without polymorphism, a typed language would
be very rigid.

We would have to define many different kinds of
length functions:
int-length : int list - int
real-length: real list - int
string-length: string list > int .

And the code for each of these functions would be
virtually identical!

Polymorphism adds flexibility & convenience.

ML
Polymorphism

There are 3 kinds of polymorphism:

1. Ad-hoc polymorphism: also known as
overloading. Different operations known by same
name that the compiler/interpreter resolves.

2. Inheritance-based polymorphism: subclasses
define new version of methods possessed by super
class. OO languages use this a lot!!

3. Parametric Polymorphism: types/type variables
explicitly used as parameters.

ML
Polymorphism

1. Ad-hoc polymorphism:
Different operations on different types known by the
same name (also called overloading)
Eg. 3.0+4
compiler/interpreter must change 4 to 4.0 first

2. Inheritance polymorphism:
. Use sub-classing to define new versions of
existing functions (OO)
E.g.:
public class Employee{
public int salary;

public void income() = {return
salary;}
}
public class Waitress extends Employee({
public int tips;
public void income() = {return
(salary + tips);}
public class Professor extends Employee;

ML
Polymorphism

3. Parametric Polymorphism:

« Allows types to be parameters to functions and
other types.

» Basicidea is to have a type variable...
« Type of function depend on type of parameter
* Implementation:

Homogenous implementations (ML)

— One one copy of code is generated

— Polymorphic parameters must internally be
implemented as pointers

Heterogeneous implementation (C++)
— One copy of function code per instantiation

— Access to polymorphic parameters can be
more efficient

Polymorphic FunctionsIVIL

Function Polymorphism:

values (including variables or functions) that can have
more than one type

Examples:

fun length L = if (null L) then 0 else 1 + length (tl L);

fun reverse [1 =]
| reverse (h::t) = reverse(t) @ [h];

fun listify x = [x];

fun apply (f,x) = (f x);
apply(real,5);

Without polymorphism, we would need many
functions:
int-length, int-reverse, real-length, real-reverse, etc.

Polymorphic FunctionswIL

Polymorphic functions are common in ML:

-funid X = X; a7
= e > -id7;
valid=fn:'a->'a val it =7 :int
-id "abc";

val it = "abc" : string

- fun listify X = [X];

e e o - listify 3;
val listify = fn : 'a -> ‘a list val it = [3] : int list
- listify 7.3;
val it = [7.3] : real list

- fun double X = (X,X);
val double =fn:'a->'a*'a

- double “xy”;

val it = ("xy","xy") : string * string

- double [1,2,3];

val it = ([1,2,3],[1,2,3]) : int list * int list

ML
Polymorphic Functions

- fun inc(N,X) = (N+1,X);

val inc =fn :int *'a->int * 'a

-inc (2,5);

val it = (3,5) :int *int

-inc (4,(34,5));

val it = (5,(34,5)) : int * (int * int)

- fun swap(X,Y) = (Y,X);
valswap=fn:'a*b->'b*'a

- swap (“abc”,7);

val it = (7,"abc") : int * string

- swap (13.4,[12,3,3]);

val it = ([12,3,3],13.4) : int list * real

- fun pair2list(X,Y) = [X,Y];
val pair2list = fn : 'a * ‘a -> ‘a list

- pair2list(1,2);

val it = [1,2] : int list
- pair2list(1,"cd");

?

ML

Polymorphic Functions

fun apply(Func,X) = Func X;

val apply =fn:(a->'b) *'a->'b

-apply (hd, [1,2,3]);

val it=1:int

- apply (length, [23,100]);
val it = 2 : integer

fun applytwice(Func,X) = Func(Func X);

val applytwice =fn: ('a->'a) *'a->"a

- applytwice (square,3);
val it = 81 : int

- applytwice (tl, [1,2,3,4]);
?

- applytwice (hd, [1,2,3,4]);
?

ML

Polymorphism

Operators that restrict polymorphism

Arithmetic operators: +, -, *, —

Division-related operations e.g. /, div, mod
Inequality comparison operators: <, <=, >=, > etc.
Boolean connectives: andalso, orelse, not
String concatenation operator: A

Type conversion operators

— E.g. ord, chr, real, str, floor, ceiling, round,
truncate,...

Operators that allow polymorphism

Tuple operators
List operators
Equality operators =, <>

