
ML Lectures (continued)
Winter 2007

PolymorphismPolymorphism
Greek: poly = many , morph = form

Definitions:
Polymorphism:

• dictionary.com: the capability of assuming different
forms; the capability of widely varying in form. The
occurrence of different forms, stages, or types

• Software: a value/variable can belong to multiple
types

Monomorphism:
Dictionary.com: having only one form, same

genotype…
Software: every value/variable belongs to exactly one

type

Without polymorphism, a typed language would
be very rigid.

We would have to define many different kinds of
length functions:
int-length : int list int
real-length: real list int
string-length: string list int ………..

And the code for each of these functions would be
virtually identical!

Polymorphism adds flexibility & convenience.

ML

PolymorphismPolymorphism
There are 3 kinds of polymorphism:
1. Ad-hoc polymorphism: also known as
overloading. Different operations known by same
name that the compiler/interpreter resolves.

2. Inheritance-based polymorphism: subclasses
define new version of methods possessed by super
class. OO languages use this a lot!!

3. Parametric Polymorphism: types/type variables
explicitly used as parameters.

ML

PolymorphismPolymorphism
1. Ad-hoc polymorphism:
Different operations on different types known by the

same name (also called overloading)
E.g. 3.0 + 4

compiler/interpreter must change 4 to 4.0 first

2. Inheritance polymorphism:
• Use sub-classing to define new versions of

existing functions (OO)
E.g.:
public class Employee{

public int salary;
public void income() = {return

salary;}
}
public class Waitress extends Employee{

public int tips;
public void income() = {return

(salary + tips);}
public class Professor extends Employee;

ML

PolymorphismPolymorphism

3. Parametric Polymorphism:
• Allows types to be parameters to functions and

other types.
• Basic idea is to have a type variable…
• Type of function depend on type of parameter
• Implementation:

Homogenous implementations (ML)
– One one copy of code is generated
– Polymorphic parameters must internally be

implemented as pointers
Heterogeneous implementation (C++)
– One copy of function code per instantiation
– Access to polymorphic parameters can be

more efficient

ML

Parametric Polymorphism
Examples

type (<list type params>) <identifier> = <type expr>

Example 1- pair
-type ‘a pair = ‘a * ‘a;
type ‘a pair = ‘a * ‘a

-(1,2): int pair;
val it = (1,2): int pair

Example 2- word count
- type (‘d,’r) mapping = (‘d * ‘r) list;
type (‘a, ‘b) mapping = (‘a * ‘b) list

-val wc = (“in”,5), (“a”,1)]: (string, int) mapping;
val wc – [(“in”,5), (“a”,1)] : (string, int) mapping

Function Polymorphism:
values (including variables or functions) that can have
more than one type

Examples:

fun length L = if (null L) then 0 else 1 + length (tl L);

fun reverse [] = []
| reverse (h::t) = reverse(t) @ [h];

fun listify x = [x];

fun apply (f,x) = (f x);
apply(real,5);

Without polymorphism, we would need many
functions:
int-length, int-reverse, real-length, real-reverse, etc.

Polymorphic FunctionsPolymorphic Functions
ML

Polymorphic FunctionsPolymorphic Functions

- fun id X = X;
val id = fn : 'a -> 'a

- fun listify X = [X];
val listify = fn : 'a -> 'a list

- fun double X = (X,X);
val double = fn : 'a -> 'a * 'a

- id 7;
val it = 7 : int
- id "abc";
val it = "abc" : string

- listify 3;
val it = [3] : int list
- listify 7.3;
val it = [7.3] : real list

- double “xy”;
val it = ("xy","xy") : string * string
- double [1,2,3];
val it = ([1,2,3],[1,2,3]) : int list * int list

ML

Polymorphic functions are common in ML:

Polymorphic FunctionsPolymorphic Functions
- fun inc(N,X) = (N+1,X);
val inc = fn : int * 'a -> int * 'a

- fun swap(X,Y) = (Y,X);
val swap = fn : 'a * 'b -> 'b * 'a

- fun pair2list(X,Y) = [X,Y];
val pair2list = fn : 'a * 'a -> 'a list

- swap (“abc”,7);
val it = (7,"abc") : int * string
- swap (13.4,[12,3,3]);
val it = ([12,3,3],13.4) : int list * real

- pair2list(1,2);
val it = [1,2] : int list
- pair2list(1,"cd");
?

ML

- inc (2,5);
val it = (3,5) : int * int
- inc (4,(34,5));
val it = (5,(34,5)) : int * (int * int)

Polymorphic FunctionsPolymorphic Functions

- fun apply(Func,X) = Func X;
val apply = fn : ('a -> 'b) * 'a -> 'b

- fun applytwice(Func,X) = Func(Func X);
val applytwice = fn : ('a -> 'a) * 'a -> 'a

- apply (hd, [1,2,3]);
val it = 1 : int
- apply (length, [23,100]);
val it = 2 : integer

- applytwice (square,3);
val it = 81 : int
- applytwice (tl, [1,2,3,4]);
?
- applytwice (hd, [1,2,3,4]);
?

ML

PolymorphismPolymorphism

Operators that restrict polymorphism
• Arithmetic operators: + , -, * , –
• Division-related operations e.g. / , div, mod
• Inequality comparison operators: < , <=, >=, >,etc.
• Boolean connectives: andalso, orelse, not
• String concatenation operator: ^
• Type conversion operators

– E.g. ord, chr, real, str, floor, ceiling, round,
truncate,…

Operators that allow polymorphism
• Tuple operators
• List operators
• Equality operators =, <>

ML
Equality Types and

`a versus ``a
= and <> are equality operators
ML defines a class of types called equality types, which

are types that allow equality to be tested. Most
basic types are equality types – integer, boolean,
character and string, not functions

One can form more equality types by forming tuples or
lists of equality types.

If a function uses equality comparison, it restricts the
type to an equality type, as illustrated in the
examples below.

The following examples are from [Ullman, 1998, pg.
153]

1 fun rev1(L) =
2 if L = nil then nl
3 else rev1(tl(L) @ [hd(L)];

val rev1 = fun : ‘’a list -> ‘’a list
Reversal using an equality comparison

4 fun rev2(nil) = nil
5 | rev2(x::xs) = rev2(xs) @ [x]

val rev2 = fun : ’a list -> ’a list
Reversal *without* an equality comparison

