
University of Toronto
CSC324 – Principles of Programming Languages, Winter 2007

Assignment # 1

Due Date
This assignment is due on Friday January 26, 2007 at noon.

This assignment is out of 60 marks and is work 5% of your final grade.

Silent Policy
A silent policy will take effect 24 hours before this assignment is due. This means that no question will be
answered, whether it is asked on the newsgroup, by email, or in person.

Handing in this Assignment
You must hand in this assignment on paper in the CSC324 drop box in the Bahen Computer Lab, BA2220, or
electronically on CDF:

 https://www.cdf.toronto.edu/students

We will accept your submission in plain ASCII (in which case your submission file must be called a1.txt), in
PostScript (a1.ps), or in PDF (a1.pdf). We recommend ASCII – the electronic submission option is meant to be
convenient and easy, not to create additional work for you, so don’t waste your time on a fancy presentation. You
may draw your parse trees using any reasonable representation, as long as it is clear. It is your responsibility to
ensure that your assignment is readable when printed from CDF. Unreadable portions of your submission will
receive 0 marks. If you submit the assignment both on paper and electronically, only the electronic submission
will be graded. Your electronic submission must contain your first name, last name, and student number, all
clearly labeled.

Clarification Page
It is your responsibility to consult the AI Clarification Page
 http://www.cs.toronto.edu/~sheila/assns/A1/a1_faq.html
and the newsgroup for any corrections or clarifications to the assignment.

Please include the following information with your submission.
(No signature is necessary if you submit electronically.)

Last Name:___________________ First Name:____________________

Student #:____________________ CDF Login:____________________

Email:_______________________ Date & Time:___________________

Grace days used for this assignment: _________

All answers are my own, written in isolation, without help from others. This submission is in accordance with the University of
Toronto Code of Behaviour on Academic Matters (http://www.artsandscience.utoronto.ca/ofr/calendar/rules.htm#behaviour).

Signature: ______________________

 2

University of Toronto
CSC324 – Principles of Programming Languages, Winter 2007

Assignment # 1

 1. [28 marks total, 4 marks each]

 For each of the following languages,

• provide a context-free grammar in BNF that generates all strings in the language and no other
strings, or say it cannot be done, and

• provide a regular expression that accepts all strings in the language, or say it cannot be done.

If you claim that a context-free grammar / regular expression cannot be provided, you do not
have to explain why.

a) All binary strings that contain 101 as a substring.

b) All binary strings that do not contain 101 as a substring.

c) All palindromes over {x,y,z}.

d) All strings over {a,b} with twice as many a's as b's.

e) All strings over {a,b} in which every a is followed by a b (not necessarily immediately).

f) All strings over {a,b,c,d} of the form ai bj ck dl, for positive naturals i,j,k,l, such that i=k
 and j=l.

g) All strings over {a,b,c} of the form ai bj ck, for positive naturals i,j,k,l, such that j=2i+k.

2. [6 marks total] Consider the following regular expression:

 abb*(c + d*) + (a*bc*bc* + c*)*b

Specify a context-free grammar in BNF that generates all the strings accepted by this regular
expression and no other strings. Include all components of the grammar. Simpler grammars will
be given more marks.

 3

3. [12 marks total] Consider the following grammar:

start symbol: <expr>

production rules:

<expr> ::= <pred> | <quant>

<quant> ::= exists <vars> . <conj> | <conj>

<conj> ::= <neg> and <conj> | <neg>

<neg> ::= not <pred> | <pred>

<pred> ::= P | Q | R

<vars> ::= <var> | <var> , <vars>

<var> ::= x | y | z

a) [1 mark] What are the terminals in this grammar?

b) [1 mark] What are the non-terminals in this grammar?

c) [2 mark] Give two different strings generated by this grammar. One of the strings must

contain all terminals of the grammar.

d) [4 mark] Is there a string generated by the grammar using two different derivations? If your

answer is yes, show the derivations. If your answer is no, explain why not.

e) [4 mark] Is the grammar ambiguous? If you think the grammar is ambiguous, prove it. If

you think it is not, explain why.

 4

4. [14 marks total]
Your task is to define an unambiguous context-free grammar in BNF that generates all valid
program statements in the programming language SIMPLE and no other strings. A valid
program statement in SIMPLE can be an assignment statement, an if-then-else statement or an
ok statement. The syntax of these statements is described informally below.
• an if-then-else statements has the following syntax:

if boolean_expression then valid_program_statement else valid_program_statement
• an assignment statement has syntax x:=E meaning “x is assigned the value E”, where x is a

variable and E is either a boolean expression or an arithmetic expression.
• program statement ok, represented as such, has meaning “do nothing”.
• parentheses may be used for grouping of program statements and expressions.
• valid boolean expressions may be constructed using the following three boolean operators:

negation (not), conjunction (and), and disjunction (or).
1. an atomic boolean expression is a boolean expression.
2. not E and (E) are boolean expressions for a boolean expression E.
3. A and B and A or B are boolean expressions for boolean expressions A and B.

• Valid arithmetic expressions may be constructed using the following five arithmetic
operators: the unary operator – and binary operators +, –, *, and /
1. a number is an arithmetic expression.
2. – E and (E) are arithmetic expressions for an arithmetic expression E.
3. A+B , A–B , A*B , and A/B are arithmetic expressions for arithmetic expressions A

and B.
Assume that there are production rules for generating atomic boolean expressions, numbers, and
variables starting from non-terminals <boolean>, <number>, and <variable>, respectively.
So you may refer to these non-terminals in your grammar, but you need not define them.

By way of illustration, suppose that <number> generates integers 1 to 5, <boolean>
generates boolean expressions P, Q, and R , and <variable> generates variables x and y .
Then

If P then (if Q or R then x := 1 + 5 * (2 + 3) else y := P) else ok
is a valid program statement in SIMPLE.

In addition, the following properties should hold:

• The precedence order of boolean operations is (from highest to lowest priority):
1) not
2) and
3) or
Parentheses override the precedence order.

• The precedence order of arithmetic operations is (from highest to lowest priority):
1) unary –
2) * and /
3) + and –

 Parentheses override the precedence order.
• and, or, +, and – are left-associative, / and – are right-associative.

	Please include the following information with your submission.
	(No signature is necessary if you submit electronically.)
	Last Name:___________________ First Name:____________________
	Student #:____________________ CDF Login:____________________
	Email:_______________________ Date & Time:___________________
	Grace days used for this assignment: _________

