Syntax of Programming
Languages

Reading:

e Sebesta, sections 3.1-3.4, sections 4.3—4.5

©Diane Horton 2000;
Modified by Sheila Mcllraith 2004.

What is a Programming
Language?

We tend to think of a compiler or an IDE as a
programming language.
E.g., JDF, Java Workshop.

But these things are not Java. The language is
an abstract entity, which these pieces of soft-
ware implement.

Specification:
VS
Implementation:

Formal notion of a “language”: a set of strings
of symbols from some alphabet.

Language Specification
Two parts: syntax and semantics.
Syntax

Definition*: (1) The way in which words are
put together to form phrases and sentences.
(2) Analysis of the grammatical arrangement
of words, to show their relation.

Root: means “arrange”.

The syntax of a language tells us two things:
what’s legal, and what the relationships are in
a legal sentence.

Example of relationships:
“used kids clothing store”

*Definitions are paraphrased from Webster's and the
OoB.

For a programming language, the units are not
words but "“tokens”. Example:

int num;
num = x + 3;

Tokens:

Structure:

statement-list

statement statement-list
declaration statement
type D assignment
-
int num ID = expression

num

Specifying syntax informally

Example: “Everything between “/*" and "x/”
is a comment and should be ignored.”

Code:

/* Do such and such, watching out for problem fleep.

Store the result in y. */
3; */
x * 17.2;

X
y

When syntax is defined informally, incompati-
ble dialects of the language may evolve.

Specifying syntax formally

The state of the art is to define programming
language syntax formally.

There are a number of well-understood for-
malisms for doing so.

We'll talk about this in some detail.

Semantics

Definition: The study or science of meaning in
language forms. Root: means “signify”.

The semantics of a language defines the mean-
ing of the legal sentences of the language.

Specifying semantics informally

Example: The Java Language Specification by
Gosling, Joy, and Steele, page 93:

“The meaning of a name classified as a PackageName
is determined as follows:

(1) If the package name consists of a single Identifier,
then this identifier denotes a top-level package named by
that identifier. If no packages of that name is accessible,
then a compile-time error occurs.

(2) If a package name is of the form Q.Id, then ...”

Problems with informal specification of seman-
tics?

Unfortunately

Defining semantics is inherently harder than
defining syntax.

There are several formalisms for specifying pro-
gramming language semantics (see Sebesta sec-
tion 3.5), but they are hard to use and have
not been widely adopted.

The state of the art is to define programming
language semantics informally, in English.

Intended Audience

A language specification is written for three
categories of people:

e Implementers,
i.e., programmers writing a compiler for
that language.

e Users,
i.e., programmers writing in that language.

e Potential future users,
during development of the language.

Want: What properties do we want a good
language specification to have?

Specifying PL syntax
Two parts: Lexical rules, and syntax.
Lexical rules

Specify the form of the building blocks of the
language:

e what's a token
e how tokens are delimited
e where can white space go

e syntax of comments

This is often described informally, in English.

Trickier parts (e.g., syntax of real numbers)
are sometimes described more formally.

Syntax

Specifies how to put the building blocks to-
gether.

Grammars

Informal idea of grammar: A bunch of rules.
e Don't end a sentence with a preposition.
e Subject and verb must agree in number.

A Formal grammar is a different concept.

A ‘“language” is a set of strings; A grammar

“generates” a language — it specifies which

strings are in the language.

A grammar can be used to define any lan-
guage: Java, Spanish, Unix commands.

There are many kinds of formal grammar.

10

Chomsky’s Hierarchy

There are several categories of grammar, or-
dered by expressiveness (the last one is the
least expressive):

e Phrase-Structure Grammars
e Context-Sensitive Grammars
e Context-Free Grammars

e Regular Grammars (can be described by
regular expressions)

This hierarchy (circa 1950) is named after lin-
guist (and political activist) Noam Chomsky,

who researched grammars for natural language.

11

Regular Expressions

Kleene's language definition for Regular Languages.

Examples:
e (0+ 1)*
o 1T+ ;)"
e (a+b)*aa(a + b)*

Notation:

Kleene Closure: * superscript denotes O or more rep-
etitions

Positive Closure: 1 superscript denotes 1 or more rep-
etitions

Alternation: binary “4" denotes choice. It is also de-
noted by |, i.e., (O|1)*.

“(" and “)" are used for grouping
e (epsilon) denotes the empty or " null” string.

@ denotes the language with no strings.

12

Regular Grammars

Defined over alphabet 3>, using non-
terminals and grammar rules, analo-
gous to terminals (words), and produc-
tion rules of Context-Free Grammars
(which we'll see later), but more re-
stricted.

Left-recursive:
<X> a b
a| <X> b

<N>

<X>

Right-recursive:
N b | b <Y>
Y ab | ab<y>

13

Give regular expressions for these languages:

1.

All alphanumeric strings beginning with an
upper-case letter.

All strings of a's and b's in which the third-
last character is b.

All strings of 0's and 1's in which every pair
of adjacent O's appears before any pairs of
adjacent 1’s.

. All the binary numbers with exactly six 1's.

. What is another way of writing 0T1+2%+

14

Limitations of Regular Expressions Context-Free Grammar

Regular expressions are not powerful enough CTFGS are more powerful than regular expres-
to describe some languages. sions.
Definition
Examples:
e The language consisting of all strings of A CFG has four parts:
one or more a's followed by the same num- e A set of tokens (or “terminals”):
ber of b’s. The atomic symbols of the language.
e The language consisting of strings contain- e A set of “non-terminals”:
ing a's, left brackets, and right brackets, Variables used in the grammar.
such that the brackets match. e A special non-terminal chosen as the ‘“start-

ing non-terminal” or ‘“start symbol’:
It represents the top-level construct of the

Research question: How can we be sure there language.

iSs no regular expression for these languages?
e A set of rules (or “productions”), each spec-

ifying one legal way that a non-terminal
could be constructed from a sequence of
tokens and non-terminals.

Research question: Exactly what things can
and cannot be expressed with a regular expres-
sion?

15 16

Example Backus-Naur Form

A CFG for real numbers: A notation for writing down a CFG.

e Terminals: 01 234567889 .
Example

e Non-terminals: real-number, part, digit.
<real-number> --> <part> . <part>

e Productions: <part> --> <digit> | <digit> <part>
<digit> ->0|l1]2]314l51617181F9

— A digit is any single token except ”."”.
Notation
— A part is a digit.

e Productions: Non-terminal, followed by “-=>"»

then the list of tokens and non-terminals
that it can be made of, without punctua-
— A real-number is a part, followed by “."”, tion.
followed by a part.

— A part is a digit followed by a part.

e Terminals: Just written within the rules.

e Start symbol: real-number.
e Non-terminals: enclosed with “<" and ‘“>".

Note that we use recursion to specify repeated (<empty> denotes the empty string.)

occurrences.
e Start symbol: Usually just the first non-

We have defined this CFG using plain English. terminal listed.

A notation might be more convenient.

17 18

Note that this is a language for describing a
language! We call this a “meta-language”.
(“meta” meaning “above” or “transcending”.)

Write a CFG for each of the 3 languages we
wrote regular expressions for a few slides ago.

More Examples

Write a CFG for each of these languages:
1. all non-empty strings containing only a’s.

2. all strings of odd length containing only
a’'s.

3. all strings of one or more a’'s followed by
one more more b’s.

19

CFGs Are More “Powerful”
Than REs

That is, there are languages that cannot be
described with a RE but can be described with
a CFG.

Example: The language consisting of strings
with one or more a’s followed by the same

number of b’s.

There is no regular expression for this lan-
guage.

CFG for the language:

20

Extended BNF

There are extensions to BNF that make it more

conas but no more powerful (i.e., there is no
language that can be expressed with EBNF but
not with BNF).

Examples:

e { blah } denotes zero or more repetitions
of blah.

[blah] denotes that blah is optional.

a + superscript denotes one or more repe-
titions.

a numeric superscript denotes a maximum
number of repetitions.

(and) are used for grouping.

There is no one standard EBNF; it just refers
to any extension of BNF.
21

EBNF is more concise than BNF.

Example (Sebesta, p. 121)

BNF grammar:

<expr> --> <expr> + <term> |
<expr> - <term> |
<term>

<term> --> <term> * <factor> |
<term> / <factor> |
<factor>

EBNF grammar for the same language.:

<expr> --> <term> { (+|-) <term> }
<term> --> <factor> { (*|/) <factor> }

22

Derivations Parse Trees

Example: Parse trees show the structure within a sen-
tence of the language.

Example
Grammar:
<real-number> --> <part> . <part>
<part> --> <digit> | <digit> <part>
<digit> -->0|1]121314151617]|8129

Parse tree for the sentence “97.123":

Definition: Beginning with the start symbol,
apply rules until there are only terminals left.

A sentence is in the language generated by a

grammar iff there is a derivation for it. 9 7 . 1 2 3
23 24

Definitions

Parse tree: A tree in which
e the root is the start symbol;
e cvery leaf is a terminal; and

e every internal node is a non-terminal, and
its children correspond, in order, to the
RHS of one of its productions in the gram-
mar.

Parsing: The process of producing a parse
tree.

A sentence is in the language generated by a
grammar iff there is a parse tree for the sen-
tence.

25

Syntax of Programming
Languages (cont’d)

Reminder of Readings:

e Sebesta, sections 3.1-3.4, sections 4.3—4.5

©Diane Horton 2000, Suzanne Stevenson 2001.
Modified and put together by Eric Joanis 2002.
Further modified by Sheila Mcllraith 2004.

26

Syntactic Ambiguity
In English

Syntactically ambiguous sentences of English:
e "I saw the dog with the binoculars.”

e "“The friends you praise sometimes deserve
it."”

e '"He seemed nice to her.”

Other kinds of ambiguity in English:

Aside: We can often ‘“disambiguate” ambigu-
ous sentences. Question: How?

But we can be wrong.
Example: “I put the box on the table

27

In a programming language

Example:

<stmt> --> <assnt-stmt> | <loop-stmt> | <if-stmt>
<if-stmt> --> if <boolean-expr> then <stmt>
| if <boolean-expr> then <stmt> else <stmt>

Example sentence:

if (x odd) then
if (x == 1) then
print "bleep";
else

print "boop";

EXxercise: Draw the two parse trees.
28

Definition: A grammar is ambiguous iff it
generates a sentence for which there are two
or more distinct parse trees

To prove that a grammar is ambiguous, give a
string and two parse trees for it.

A sentence is ambiguous with respect to a
grammar iff that grammar generates two or
more distinct parse trees for the sentence.

Note that having two distinct derivations does
not make a sentence ambiguous. A derivation
corresponds to a traversal through a parse tre,
and one can traverse a single tree in many or-
ders.

29

Example

Grammar: if statement two slides ago.

Sentence:

if (x odd) then
print "bleep";

One parse tree:

Two derivations:

30

Want: When specifying a programming lan-
guage, we want the grammar to be completely
unambiguous.

Research question: Is there a procedure one

can follow to determine whether or not a given
grammar is ambiguous?

31

Notation and Terminology

We say that L(G) is the language generated
by grammar G.

So G is ambiguous if L(G) contains a sentence
which has more than one parse tree, or more
than one leftmost (or canonical) derivation.

Dealing with ambiguity

We have two strategies:

1. Change the language to include delimiters

2. Change the grammar to impose associa-
tivity and precedence

32

Changing the language to include Example: A CFG for Arithmetic
delimiters EXxpressions

Algol 68 if-statement grammar: Grammar 1:

<expn> --> <expn> + <expn>
<expn> - <expn>

<stmt> --> <assnt-stmt> | <loop-stmt> | <if-stmt> <expn> * <expn>
<if-stmt> --> if <boolean-expr> then <stmt> fi <expn> / <expn>
| if <boolean-expr> then <stmt> <expn> ~ <expn>
else <stmt> <identifier> |

fi <literal>

Example: parse 8 - 3 x 2

33 34

Changing the language to include
delimiters

Grammar 2:

<expn> --> (<expn>) - (<expn>) |
(<expn>) * (<expn>) |
<identifier> |
<literal>

(8)-((3)*(2)) € L(G)
((8)-(3))*(2) € L(G)
8 -3 x2¢L(GQ)

Grammar 3:

<expn> --> <expn> - <expn> |
<expn> * <expn> |
<identifier> |
<literal> |
(<expr>)

Accepts all expressions, but still ambiguous!

Changing the grammar to impose
precedence

Grammar 4:

<expn> -->

Grouping in parse tree now reflects Precedence
precedence

e Low Precedence:

E le: - 2
Xample: parse 8 - 3 * Addition + and Subtraction -

e Medium Precedence:
Multiplication * and Division /

e Higher Precedence:
Exponentiation ~©

e Highest Precedence:
Parenthesized expressions (<expr>)

= Ordered lowest to highest in grammar.

Approach: Introduce a non-terminal for every
precedence level.
37 38

Associativity Associativity (cont.)

Deals with operators of same precedence

Implicit grouping or parenthesizing

Examples:

Left associative: x, /, +, - e We want multiplication to be left-associative,

SO we wrote:

Right associative: ~ <term> -> <term> * <factor>

e We want exponentiation to be right-associative,
SO might write:

Approach: For left-associative operators, put <expo> -> <number> ** <expo> | <number>
the recursive term before the nonrecursive term

in a production rule. For right-associative op-

erators, put it after.

39 40

Dealing with Ambiguity An Inherently Ambiguous
Language

. Can't always remove an ambiguity from a

) i Suppose we want to generate the following lan-
grammar by restructuring productions.

guage:

o | L={a'bc¥|i,j,k>1,i=jorj=k}
. When specifying a programming language,

we want the grammar to be completely un-
ambiguous.

Grammar:
. An inherently ambiguous language does not

poOsSsess an unambiguous grammar.

. There is no algorithm that can examine an
arbitrary context-free grammar and tell if
it is ambiguous, i.e., detecting ambiguity
in context-free grammars is an undecidable
problem.

41 42

Two parse trees for a‘bict

43

Limitations of CFGs

CFGs are not powerful enough to describe some
languages.

Example:

e The language consisting of strings with one
or more a’'s followed by the same number
of b's then the same number of C’'s.

Le., {a''c¢" |i>1}.

o { a™H"c™d" | myn>1 }.

Research question: Exactly what things can
and cannot be expressed with a CFG?

Research question: Can we write an algo-
rithm which examines an arbitrary CFG and
tells if it is ambiguous or not? — Undecidable!

Research question: Is there an algorithm that
can examine two arbitrary CFGs and determine
if they generate the same language? — Unde-
cidable!

a4

The Chomsky Hierarchy
Recall: There are several categories of gram-
mar that are more and less expressive, forming
a hierarchy:

Phrase-structure grammars
Context-sensitive grammars

Context-free grammars

Regular grammars

This is called the Chomsky hierarchy, after lin-
guist Noam Chomsky, who did much of the
original research.

45

Regular vs. Context-Free
Languages

Regular languages are simpler than program-
ming languages (e.g., numbers, identifiers).

e Context-free grammars can describe nested
constructs, matching pairs of items.

e Regular grammars can only describe linear,
not nested, structure.

46

Using CFGs for PL Syntax
Some aspects of programming language syntax
can’'t be specified with CFGs:

e Cannot declare the same identifier twice in
the same block.

e Must declare an identifier before using it.

e A[i,j] is valid only if A is two-dimensional.

e The number of actual parameters must equal

the number of formal parameters.

Other things are awkward to say with CFGs:

e Identifier names must be no more than 50
characters long.

These aspects of a programming language are
usually specified informally, separately from the
formal grammar.

47

Implementations
The Translation Process

1. Lexical Analysis: Converts source code
into sequence of tokens.
We use regular grammars and finite state
automata (recognizers).

2. Syntactic Analysis: Structures tokens
into initial parse tree.
We use CFGs and parsing algorithms.

3. Semantic Analysis: Annotates parse tree
with semantic actions.

4., Code Generation: Produces final ma-

chine code.
48

Compiler-compilers

compiler—-compiler

Examples:

e yacc ("yet another compiler-compiler”).
See: man yacc.

e bison (the GNU replacement for yacc)

e JavaCC.
See: http://www.webgain.com/products/java cc

So why does anyone still write compilers by
hand?

49

Parsing Techniques

Two general strategies:

e Bottom-up: Beginning with the leaves (the
sentence to be parsed), work upwards to
the root (the start symbol).

e Top-down: Beginning with the root (the
start symbol), work downwards to the leaves
(the sentence to be parsed).

Recursive descent parsing (top-down)

Every non-terminal is represented by a sub-
program that parses strings generated by that
non-terminal, according to its production rules.

When it needs to parse another non-terminal,
it calls the corresponding subprogram.

Requires: No left-recursion in the productions;
ability to know which RHS applies without look-
ing ahead.

50

Addressing the "no left-recursion”
problem

Problem: Left Recursion

<expr> —-> <expr> + <term> | <term>
Possible Solutions:
1. Right Recursion? E.qg.,

<expr> ——> <term> | <term> + <expr>
2. Left Recursion Removal, E.g.,

<expr> ——> <term> {+ <term>}
3. Left Factoring, E.qg.,

<expr> —-—> <term> [+ <expr>]

The EBNF corresponds to the code you'd write.

51

Other Applications of Formal
Grammars

Identifying strings for an operating system
command

Examples
(Unix commands that use extended RESs):

e 1s s[y-z]*
e grep Se.h syntax.tex

e Scripting languages like awk use regular ex-
pressions.

awk ’/tolkgle/ {print $1}’ syntax.tex

52

Voice recognition

Problem: Given recorded speech, produce a
string containing the words that were spoken.

Difficulties:

How can a grammar help?

53

