Data Structures - Function Terms

Data Structures are actually just Prolog Func-
tion Terms.

Prolog Function terms do not have values. They
just act like data structures.

Acknowledgements to Tony Bonner for the Func-
tion Symbol slides that follow on functions.
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Function terms do not have values. In Prolog,
they act as data structures:

let p2(X,Y) denote a point in 2-dim space
let p3(X,Y,Z) denote a point in 3-dim space.

Write a Prolog program, SQDIST(Point1,Point2,D),
that returns the square of the distance between
two points. The program should work for 2-
and 3-dim points.

Want:

SQDIST(p2(1,2), p2(3,5), D)
(3-1)**x2 + (5-2)*%x2
4+9 = 13

returns D

and

SQDIST(p3(1,1,0), p3(2,2,3), D)

(1-2)*%2 + (1-2)**2 + (0-3)**2
1+149 = 11

returns D

and
SQDIST(p2(0,0), p3(1,1,1), D)
is undefined
69

Function Symbols in Prolog

In logic, there are two kinds of objects: predicates
and functions.

e Predicates represent statements about the
world:

John hates Mary: hates(john,mary).

John is short: short(john)
(hates is a predicate symbol, short(john) is an
atomic formula)

e Function terms represent objects in the world
the mother of Mary: mother—of(mary)
a rectangle of length 3 and width 4:
rectangle(3,4)
(mother-of (mary) is a function term, rectangle
is a function symbol)
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Prolog Program:

(1) SQDIST(p2(X1,Y1), p2(X2,Y2), D)
:— XD is X1-X2,
YD is Y1-Y2,
D is XD*XD + YD*YD.

(2) SQDIST(p3(X1,Y1,2z1), p3(X2,Y2,Z2), D)
:~ XD is X1-X2,
YD is Y1-Y2,
7D is 71-Z2,
D is XD*XD + YD*YD + ZDZD.

Query: SQDIST(p2(1,2), p2(3,5), D)
This query unifies with the head of rule (1)
with {Xx1\1, Y1\2, X2\3, Y2\5}
so, XD is X1-X2 = 1-3 = -2
YD is Y1-Y2 = 2-5 = -3
D is (-2)2 + (-3)2 = 13
So, D=13 is returned

Note: the query does not unify with the head
of rule (2), so only rule (1) is used.
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Prolog Program:

(1) SQDIST(p2(X1,Y1), p2(X2,Y2), D)
:- XD is X1-X2,
YD is Y1-Y2,
D is XD*XD + YDx*YD.

(2) sSQDIST(p3(X1,Y1,Z1), p3(X2,Y2,Z2), D)
:— XD is X1-X2,
YD is Y1-Y2,
ZD is Z1-Z2,
D is XD*XD + YD*YD + ZD*ZD.

Query: SQDIST(p3(1,1,0),p3(2,2,3),D).
This query unifies with the head of rule (2),
with {X1\1, Y1\1, z1\o, X2\2, Y2\2, z2\3}
so, XD is 1-2 = -1

YD is 1-2 = -1

ZD is 0-3 = -3

D is 1+1+9 = 11

So, D=11 is returned

Note: the query does not unify with the head
of rule (1), so only rule (2) is used.
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Returning Function Terms
as Answers

e.g., given a point, p2(X,Y), return a new point
with double the coordinates. e.g.,

Query: double(p2(3,4),P)

Answer:P = p2(6,8).

Prolog Program:
double(p2(X1,Y1), p2(X2,Y2))
- X2 is 2xX1,
Y2 is 2xY1.

In Plain English: if X2 = 2%X1 and Y2 = 2xY1,
then the double of p2(X1,Y1) is p2(X2,Y2).

An equivalent program using :
double(p2(X1,Y1), P)
- X2 is 2%X1, Y2 is 2%Y1,
P = p2(X2,Y2).

Here, "=" is being used to assign a value to

cedural thinking.
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Prolog Program:

(1) SQDIST(p2(X1,Y1), p2(X2,Y2), D)
;- XD is X1-X2,
YD is Y1-Y2,
D is XD*XD + YD*YD.

(2) SQDIST(p3(X1,Y1,Z1), p3(X2,Y2,Z2), D)
:- XD is X1-X2,
YD is Y1-Y2,
7D is 71-Z2,
D is XD*XD + YD*YD + ZD=ZD.

Query: SQDIST(p2(0,0), p3(1,1,1), D).
Note: this query does not unify with any rule,

so Prolog simply returns no, i.e., no answers
for D.
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Sample Execution

Prolog Program:

double(p2(X1,Y1), p2(X2,Y2))
- X2 is 2xX1,
Y2 is 2x*Y1.
Query: double(p2(3,4),P)

The query unifies with the head of the rule,
where the mgqu is

{X1\3, Y1\4, P\p2(X2,Y2)}
The body of the rule then evaluates:

X2 is 2xX1, i.e., 6
Y2 is 2xY1, ie., 8

The mgu becomes {X1\3, Y1\4, P\p2(6,8)}.

So, the answer is P = p2(6,8).
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Recursion with Function Symbols

Example: Electrical circuits

5 6
e Two resistors in series, with resistances R;
and R», respectively.
e Total resistance of the circuit is 5+ 6 = 11.

e Can represent the circuit as a function term:
series(5,6).

2
—W

3

A

e Two resistors in parallel.
e Total resistance of the circuit is g_f_g =1.2

e Represent the circuit as a function term:

par(2,3).
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Problem:
Write a Prolog program that computes the
total resistance of any circuit.

For example,
Query: resistance(series(1,2), R)

Answer: R = 1+2 = 3

Query: resistance(par(2,3), R)
Answer: R = (2%3)/(2+3) = 6/5 = 1.2

Query: resistance(series(3,par(2,3)), R)
Answer: R =3 + 1.2 = 4.2

Query: resistance(3, R)
Answer: R = 3
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More Complex Circuits

VYW—WW

VW

par(3, series(2,3))

4 2
Wy VW
_ «/aw ﬂ/aw L

series(par(4,5), par(2,3))
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Solution
(1) resistance(R,R) :- number(R).

(2) resistance(series(C1,C2), R)
:— resistance(C1, R1),
resistance(C2, R2),
R is R1+R2.

(3) resistance(par(C1,C2), R)
:- resistance(C1,R1),
resistance(C2,R2),

R is (R1*R2)/(R1+R2).

Sample Query:
resistance(series(3,par(6,3)), TR)

i.e., compute the total resistance, TR, of the
following circuit:

6
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Unification

Two atomic formulas with distinct variables
unify if and only if they can be made syntac-
tically identical by replacing their variables by

other terms. For example,
e loves(bob,Y) unifies with loves(bob,sue)

by replacing Y by sue.
e loves(bob,Y) unifies with loves(X,santa)

by replacing Y by santa and X by bob.

Both formulas become loves(bob,santa).

Formally, we use the substitution
{Y\santa, X\bob}

which is called a unifier of loves(bob,Y)

and loves(X,santa).
e Note that loves(bob,X) does not unify with

loves(tony,Y), since no substitution for X,Y
can make the two formulae syntactically
equal.
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Execution of Prolog Programs

e Unification: (variable bindings)
Specializes general rules to apply to a spe-
cific problem.

e Backward Chaining/
Top-Down Reasoning/
Goal-Directed Reasoning:
Reduces a goal to one or more subgoals.

e Backtracking:
Systematically searches for all possible so-
lutions that can be obtained via unification
and backchaining.
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Rules of Unification
A constant unifies only with itself.

Two structures unify iff they have the same
name, number of arguments, and all the argu-
ments unify.

A variable unifies with anything. If the other
thing has a value, the variable is instantiated.
Otherwise, the two are associated in a way
such that if one gets a value so does the other.

Unification requires all instances of the same
variabe in a rule to get the same value

All rules searched, if requested by successive
typing of ;"
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Unification (cont.)
Examples:

p(X,X) unifies with p(b,b) and with p(c,c), but
not with p(b,c).

p(X,b) unifies with p(Y,Y) with unifier X b,Y
b to become p(b,b).

p(X,Z,Z) unifies with P(Y,Y,b) with unifier X
b,Y b,Z b to become p(b,b,b).

p(X,b,X) does not unify with p(Y,Y,c).
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Abstract Examples

e p(£(X),X) unifies with p(Y,b)
with unifier {X\b, Y\f(b)}
to become p(f(b),b).

e p(b,f(X,Y),c) unifies with p(U,£(U,V),V)
with unifier {X\b, Y\c, U\b, V\c}
to become p(b,f(b,c),c).
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Unification with Function Terms
Prolog uses unification to compute its answers.
e.g., Given the database:

owns (john, car(red,corvette))

owns (john, cat(black,siamese,sylvester))

owns (elvis, copyright(song,"jailhouse rock"))

owns (tolstoy, copyright(book,"war and peace"))
owns(elvis, car(red,cadillac))

the query owns(Who,car (red,Make))
unifies with the following database facts:

e owns(elvis,car(red,cadillac)),
with unifier {Who\elvis, Make\cadillac}

e owns (john,car(red,corvette)),
with unifier {Who\john, Make\corvette}
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A Negative Example
p(b,£(X,X),c) does not unify with p(U,£(U,V),V).
Reason:

e To make the first arguments equal,
we must replace U by b.

e To make the third arguments equal,
we must replace V by c.

e These substitutions convert
p(U,£(U,V),V) into p(b,f(b,c),c).

e However, no substitution for X will convert
p(b,f(X,X),c) into p(b,f(b,c),c).
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Another Kind of Most General Unifiers (MGU)

Negative Example The atomic formulas p(X,£(Y)) and p(g(U),V)

p(£(X),X) does not unify with p(Y,Y). have infinitely many unifiers. e.g.,
Reason: o {X\g(a), Y\b, U\a, V\f(b)}
unifies them to give p(g(a),f(b)).
e Any unification would require that
X =Y and Y=X e {X\g(c), Y\d, U\c, V\f(d)}
unifies them to give p(g(c),£(d)).

e But no substitution can make . o
However, these unifiers are more specific than

f(X) =X
necessary.
e For example, The most general unifier (mgu) is
f(a) # a, using {X\a} {X\g(U), V\£(¥)}

. It unifies the two atomic formulas to give p(g(U),£(Y))
f(b) # b, using {X\b}

f(g(a)) # g(a), using {X\g(a)} Every other unifier results in an atomic formula
of this form.
£(£(c)) # £(c),  using {X\f(c)}

ete The mgu uses variables to fill in as few details

as possible.
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MGU Example

fW, 9(2), 7)

(X, Y, h(X)) More MGU Examples

To unify these two formulas, we need

Y = g(2)
Z = h(X) t1 to MGU
X =W f(X,a) f(a,Y)

f(h(X,a),b) f(h(g(a,b),Y),b)

Working backwards from W, we get
g(a,W,h(X)) | 9(Y.f(Y.2),2)

Y = g(2)=g(h(W) f(X,9(X),2) | f(Z,Y,h(Y))
Z = h(X)=h(W)

So, the mgu is
{X\W, Y\g(h(W)), Z\h(W)}

89 90



Syntax of Substitutions

Formally, a substitution is a set

{vl\tla ) ’Un\tn}

where the w;'s are distinct variable names

and the ¢t;'s are terms that do not use
any of the v;’s.

Positive Examples:

{X\a, Y\b, Z\f(a,b)}
{X\W, Y\f(W,V,a), Z\W}

Negative Examples:

{f(X)\a}

{X\a, X\b}
{X\F(X)}
{(X\f(Y), Y\g()}
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Reasoning

e Bottom-up (or forward) reasoning: start-
ing from the given facts, apply rules to infer
everything that is true.

e.g., Suppose the fact B and therule A+ B
are given. Then infer that A is true.

Top-down (or backward) reasoning: start-
ing from the query, apply the rules in re-
verse, attempting only those lines of infer-
ence that are relevant to the query.

e.g., Suppose the query is A, and the rule
A <+ B is given. Then to prove A, try to
prove B.
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Execution of Prolog Programs

e Unification: (variable bindings)

Specializes general rules to apply to a spe-
cific problem.

Backward Chaining/

Top-Down Reasoning/
Goal-Directed Reasoning:

Reduces a goal to one or more subgoals.

Backtracking:

Systematically searches for all possible so-
lutions that can be obtained via unification
and backchaining.
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Bottom-up Inference

A rule base:

<- B (1)
<-C (2)
(3)

QW=

A bottom-up proof:

infer A
rule (1)
infer B
rule (2)
infer C
rule (3)
start

So, A is proved
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Top-Down Inference

A rule base: Top-down vs Bottom-up Inference

<- B (1)

<-C (2) .

(3) e Prolog uses top-down inference, although
some other logic programming systems use
bottom-up inference (e.g., Coral).

Qw i

A top-down proof:

goal A
e Each has its own advantages and disadvan-
rule (1) tages:
goal B — Bottom-up may generate many irrele-
vant facts.
rule (2) — Top-down may explore many lines of
goal C reasoning that fail.
e Top-down and bottom-up inference are log-
rule (3) ically equivalent.
success

i.e., they both prove the same set of facts.

So, A is proved
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Example 2
Example 1 Bottom-up inference can derive
Bottom-up inference can derive infinitely many facts.
many facts.
Rule base:
Rule base:
p(f(x)) <- p(x).
pX,Y,Z) <- q(X),q(Y),q(Z). p(a).
q(al).
q(a2). Derived facts:
q(an). p(f(a))
p(£(£(a)))
Bottom-up inference derives n3 facts of the pEEE()))
form p(a,i,aj,ak):
p(al, al, al) In contast, top-down inference derives only the
p(al, al, a2) facts requested by the user, e.g.

p(al, a2, a3)
who does jane love?

what is john’s telephone number?
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Example 3
Top-down inference may fail.

Rule base:
A <- B (1)
B <-C (2)

Failed line of inference:

goal A

rule (1)

goal B

rule (2)
goal C

rule (3)

fail
(no rules infer C)
So, A is not proved
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Observation

Changing the order of rules and/or rule premises
can cause problems for Prolog. Example:

(1) above(X,Z) :- above(Y,Z), on(X,Y).
(2) above(X,Y) :- on(X,Y).

Because Prolog processes premises from left
to right, and rules from first to last, rule (1)
causes an infinite loop.
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