Data Structures - Function Terms

Data Structures are actually just Prolog Func-
tion Terms.

Prolog Function terms do not have values. They
just act like data structures.

Acknowledgements to Tony Bonner for the Func-
tion Symbol slides that follow on functions.

67

Function terms do not have values. In Prolog,
they act as data structures:

let p2(X,Y) denote a point in 2-dim space
let p3(X,Y,Z) denote a point in 3-dim space.

Write a Prolog program, SQDIST(Point1,Point2,D),
that returns the square of the distance between
two points. The program should work for 2-
and 3-dim points.

Want:

SQDIST(p2(1,2), p2(3,5), D)
(3-1)**x2 + (5-2)*%x2
4+9 = 13

returns D

and

SQDIST(p3(1,1,0), p3(2,2,3), D)

(1-2)*%2 + (1-2)**2 + (0-3)**2
1+149 = 11

returns D

and
SQDIST(p2(0,0), p3(1,1,1), D)
is undefined
69

Function Symbols in Prolog

In logic, there are two kinds of objects: predicates
and functions.

e Predicates represent statements about the
world:

John hates Mary: hates(john,mary).

John is short: short(john)
(hates is a predicate symbol, short(john) is an
atomic formula)

e Function terms represent objects in the world
the mother of Mary: mother—of(mary)
a rectangle of length 3 and width 4:
rectangle(3,4)
(mother-of (mary) is a function term, rectangle
is a function symbol)

68

Prolog Program:

(1) SQDIST(p2(X1,Y1), p2(X2,Y2), D)
:— XD is X1-X2,
YD is Y1-Y2,
D is XD*XD + YD*YD.

(2) SQDIST(p3(X1,Y1,2z1), p3(X2,Y2,Z2), D)
:~ XD is X1-X2,
YD is Y1-Y2,
7D is 71-Z2,
D is XD*XD + YD*YD + ZDZD.

Query: SQDIST(p2(1,2), p2(3,5), D)
This query unifies with the head of rule (1)
with {Xx1\1, Y1\2, X2\3, Y2\5}
so, XD is X1-X2 = 1-3 = -2
YD is Y1-Y2 = 2-5 = -3
D is (-2)2 + (-3)2 = 13
So, D=13 is returned

Note: the query does not unify with the head
of rule (2), so only rule (1) is used.
70

Prolog Program:

(1) SQDIST(p2(X1,Y1), p2(X2,Y2), D)
:- XD is X1-X2,
YD is Y1-Y2,
D is XD*XD + YDx*YD.

(2) sSQDIST(p3(X1,Y1,Z1), p3(X2,Y2,Z2), D)
:— XD is X1-X2,
YD is Y1-Y2,
ZD is Z1-Z2,
D is XD*XD + YD*YD + ZD*ZD.

Query: SQDIST(p3(1,1,0),p3(2,2,3),D).
This query unifies with the head of rule (2),
with {X1\1, Y1\1, z1\o, X2\2, Y2\2, z2\3}
so, XD is 1-2 = -1

YD is 1-2 = -1

ZD is 0-3 = -3

D is 1+1+9 = 11

So, D=11 is returned

Note: the query does not unify with the head
of rule (1), so only rule (2) is used.
71

Returning Function Terms
as Answers

e.g., given a point, p2(X,Y), return a new point
with double the coordinates. e.g.,

Query: double(p2(3,4),P)

Answer:P = p2(6,8).

Prolog Program:
double(p2(X1,Y1), p2(X2,Y2))
- X2 is 2xX1,
Y2 is 2xY1.

In Plain English: if X2 = 2%X1 and Y2 = 2xY1,
then the double of p2(X1,Y1) is p2(X2,Y2).

An equivalent program using :
double(p2(X1,Y1), P)
- X2 is 2%X1, Y2 is 2%Y1,
P = p2(X2,Y2).

Here, "=" is being used to assign a value to

cedural thinking.
73

Prolog Program:

(1) SQDIST(p2(X1,Y1), p2(X2,Y2), D)
;- XD is X1-X2,
YD is Y1-Y2,
D is XD*XD + YD*YD.

(2) SQDIST(p3(X1,Y1,Z1), p3(X2,Y2,Z2), D)
:- XD is X1-X2,
YD is Y1-Y2,
7D is 71-Z2,
D is XD*XD + YD*YD + ZD=ZD.

Query: SQDIST(p2(0,0), p3(1,1,1), D).
Note: this query does not unify with any rule,

so Prolog simply returns no, i.e., no answers
for D.

72

Sample Execution

Prolog Program:

double(p2(X1,Y1), p2(X2,Y2))
- X2 is 2xX1,
Y2 is 2x*Y1.
Query: double(p2(3,4),P)

The query unifies with the head of the rule,
where the mgqu is

{X1\3, Y1\4, P\p2(X2,Y2)}
The body of the rule then evaluates:

X2 is 2xX1, i.e., 6
Y2 is 2xY1, ie., 8

The mgu becomes {X1\3, Y1\4, P\p2(6,8)}.

So, the answer is P = p2(6,8).

74

Recursion with Function Symbols

Example: Electrical circuits

5 6
e Two resistors in series, with resistances R;
and R», respectively.
e Total resistance of the circuit is 5+ 6 = 11.

e Can represent the circuit as a function term:
series(5,6).

2
—W

3

A

e Two resistors in parallel.
e Total resistance of the circuit is g_f_g =1.2

e Represent the circuit as a function term:

par(2,3).
75

Problem:
Write a Prolog program that computes the
total resistance of any circuit.

For example,
Query: resistance(series(1,2), R)

Answer: R = 1+2 = 3

Query: resistance(par(2,3), R)
Answer: R = (2%3)/(2+3) = 6/5 = 1.2

Query: resistance(series(3,par(2,3)), R)
Answer: R =3 + 1.2 = 4.2

Query: resistance(3, R)
Answer: R = 3

77

More Complex Circuits

VYW—WW

VW

par(3, series(2,3))

4 2
Wy VW
_ «/aw ﬂ/aw L

series(par(4,5), par(2,3))

76

Solution
(1) resistance(R,R) :- number(R).

(2) resistance(series(C1,C2), R)
:— resistance(C1, R1),
resistance(C2, R2),
R is R1+R2.

(3) resistance(par(C1,C2), R)
:- resistance(C1,R1),
resistance(C2,R2),

R is (R1*R2)/(R1+R2).

Sample Query:
resistance(series(3,par(6,3)), TR)

i.e., compute the total resistance, TR, of the
following circuit:

6

s W
—W— s

W

78

ISVHd ONIANIMNN
~—

(]
AN
g ;:
@ fo
o~ o =
14 s
+ =+
E:' N ©
N
o 2 g’o?
I x ndb
=N
04 - N
. Q 0:_/._
2 e .
= & <
® S N
S T = o
T & 3%
o T E’,&’ ™
o Q g = |
g & B —=
-§§—>.8—>gg &
LA -
c o5 S
RS S
B O] L o o©
— —
2 F % &
g g
—————————————— >

ISVHA (ONIANIM) AAISHNOTY

79

Unification

Two atomic formulas with distinct variables
unify if and only if they can be made syntac-
tically identical by replacing their variables by

other terms. For example,
e loves(bob,Y) unifies with loves(bob,sue)

by replacing Y by sue.
e loves(bob,Y) unifies with loves(X,santa)

by replacing Y by santa and X by bob.

Both formulas become loves(bob,santa).

Formally, we use the substitution
{Y\santa, X\bob}

which is called a unifier of loves(bob,Y)

and loves(X,santa).
e Note that loves(bob,X) does not unify with

loves(tony,Y), since no substitution for X,Y
can make the two formulae syntactically
equal.

81

Execution of Prolog Programs

e Unification: (variable bindings)
Specializes general rules to apply to a spe-
cific problem.

e Backward Chaining/
Top-Down Reasoning/
Goal-Directed Reasoning:
Reduces a goal to one or more subgoals.

e Backtracking:
Systematically searches for all possible so-
lutions that can be obtained via unification
and backchaining.

80

Rules of Unification
A constant unifies only with itself.

Two structures unify iff they have the same
name, number of arguments, and all the argu-
ments unify.

A variable unifies with anything. If the other
thing has a value, the variable is instantiated.
Otherwise, the two are associated in a way
such that if one gets a value so does the other.

Unification requires all instances of the same
variabe in a rule to get the same value

All rules searched, if requested by successive
typing of ;"

82

Unification (cont.)
Examples:

p(X,X) unifies with p(b,b) and with p(c,c), but
not with p(b,c).

p(X,b) unifies with p(Y,Y) with unifier X b,Y
b to become p(b,b).

p(X,Z,Z) unifies with P(Y,Y,b) with unifier X
b,Y b,Z b to become p(b,b,b).

p(X,b,X) does not unify with p(Y,Y,c).

83

Abstract Examples

e p(£(X),X) unifies with p(Y,b)
with unifier {X\b, Y\f(b)}
to become p(f(b),b).

e p(b,f(X,Y),c) unifies with p(U,£(U,V),V)
with unifier {X\b, Y\c, U\b, V\c}
to become p(b,f(b,c),c).

85

Unification with Function Terms
Prolog uses unification to compute its answers.
e.g., Given the database:

owns (john, car(red,corvette))

owns (john, cat(black,siamese,sylvester))

owns (elvis, copyright(song,"jailhouse rock"))

owns (tolstoy, copyright(book,"war and peace"))
owns(elvis, car(red,cadillac))

the query owns(Who,car (red,Make))
unifies with the following database facts:

e owns(elvis,car(red,cadillac)),
with unifier {Who\elvis, Make\cadillac}

e owns (john,car(red,corvette)),
with unifier {Who\john, Make\corvette}

84

A Negative Example
p(b,£(X,X),c) does not unify with p(U,£(U,V),V).
Reason:

e To make the first arguments equal,
we must replace U by b.

e To make the third arguments equal,
we must replace V by c.

e These substitutions convert
p(U,£(U,V),V) into p(b,f(b,c),c).

e However, no substitution for X will convert
p(b,f(X,X),c) into p(b,f(b,c),c).

86

Another Kind of Most General Unifiers (MGU)

Negative Example The atomic formulas p(X,£(Y)) and p(g(U),V)

p(£(X),X) does not unify with p(Y,Y). have infinitely many unifiers. e.g.,
Reason: o {X\g(a), Y\b, U\a, V\f(b)}
unifies them to give p(g(a),f(b)).
e Any unification would require that
X =Y and Y=X e {X\g(c), Y\d, U\c, V\f(d)}
unifies them to give p(g(c),£(d)).

e But no substitution can make . o
However, these unifiers are more specific than

f(X) =X
necessary.
e For example, The most general unifier (mgu) is
f(a) # a, using {X\a} {X\g(U), V\£(¥)}

. It unifies the two atomic formulas to give p(g(U),£(Y))
f(b) # b, using {X\b}

f(g(a)) # g(a), using {X\g(a)} Every other unifier results in an atomic formula
of this form.
£(£(c)) # £(c), using {X\f(c)}

ete The mgu uses variables to fill in as few details

as possible.
87 88

MGU Example

fW, 9(2), 7)

(X, Y, h(X)) More MGU Examples

To unify these two formulas, we need

Y = g(2)
Z = h(X) t1 to MGU
X =W f(X,a) f(a,Y)

f(h(X,a),b) f(h(g(a,b),Y),b)

Working backwards from W, we get
g(a,W,h(X)) | 9(Y.f(Y.2),2)

Y = g(2)=g(h(W) f(X,9(X),2) | f(Z,Y,h(Y))
Z = h(X)=h(W)

So, the mgu is
{X\W, Y\g(h(W)), Z\h(W)}

89 90

Syntax of Substitutions

Formally, a substitution is a set

{vl\tla) ’Un\tn}

where the w;'s are distinct variable names

and the ¢t;'s are terms that do not use
any of the v;’s.

Positive Examples:

{X\a, Y\b, Z\f(a,b)}
{X\W, Y\f(W,V,a), Z\W}

Negative Examples:

{f(X)\a}

{X\a, X\b}
{X\F(X)}
{(X\f(Y), Y\g()}

91

Reasoning

e Bottom-up (or forward) reasoning: start-
ing from the given facts, apply rules to infer
everything that is true.

e.g., Suppose the fact B and therule A+ B
are given. Then infer that A is true.

Top-down (or backward) reasoning: start-
ing from the query, apply the rules in re-
verse, attempting only those lines of infer-
ence that are relevant to the query.

e.g., Suppose the query is A, and the rule
A <+ B is given. Then to prove A, try to
prove B.

93

Execution of Prolog Programs

e Unification: (variable bindings)

Specializes general rules to apply to a spe-
cific problem.

Backward Chaining/

Top-Down Reasoning/
Goal-Directed Reasoning:

Reduces a goal to one or more subgoals.

Backtracking:

Systematically searches for all possible so-
lutions that can be obtained via unification
and backchaining.

92

Bottom-up Inference

A rule base:

<- B (1)
<-C (2)
(3)

QW=

A bottom-up proof:

infer A
rule (1)
infer B
rule (2)
infer C
rule (3)
start

So, A is proved

94

Top-Down Inference

A rule base: Top-down vs Bottom-up Inference

<- B (1)

<-C (2) .

(3) e Prolog uses top-down inference, although
some other logic programming systems use
bottom-up inference (e.g., Coral).

Qw i

A top-down proof:

goal A
e Each has its own advantages and disadvan-
rule (1) tages:
goal B — Bottom-up may generate many irrele-
vant facts.
rule (2) — Top-down may explore many lines of
goal C reasoning that fail.
e Top-down and bottom-up inference are log-
rule (3) ically equivalent.
success

i.e., they both prove the same set of facts.

So, A is proved

95 96
Example 2
Example 1 Bottom-up inference can derive
Bottom-up inference can derive infinitely many facts.
many facts.
Rule base:
Rule base:
p(f(x)) <- p(x).
pX,Y,Z) <- q(X),q(Y),q(Z). p(a).
q(al).
q(a2). Derived facts:
q(an). p(f(a))
p(£(£(a)))
Bottom-up inference derives n3 facts of the pEEE()))
form p(a,i,aj,ak):
p(al, al, al) In contast, top-down inference derives only the
p(al, al, a2) facts requested by the user, e.g.

p(al, a2, a3)
who does jane love?

what is john’s telephone number?

97 98

Example 3
Top-down inference may fail.

Rule base:
A <- B (1)
B <-C (2)

Failed line of inference:

goal A

rule (1)

goal B

rule (2)
goal C

rule (3)

fail
(no rules infer C)
So, A is not proved

99

Observation

Changing the order of rules and/or rule premises
can cause problems for Prolog. Example:

(1) above(X,Z) :- above(Y,Z), on(X,Y).
(2) above(X,Y) :- on(X,Y).

Because Prolog processes premises from left
to right, and rules from first to last, rule (1)
causes an infinite loop.

100

