LOGIC PROGRAMMING
AND PROLOG

Reading:

e Sebesta, chapter 16

References:
e Clocksin and Mellish, &. 1-4, 6, 8

e Online Resources (tutorials, SWI pegetc.)

Some material ©Diane Horton 2000, and
©Suzanne Stevenson 20
Modified by Sheila Mcllraith 2004.

Prolog vs Scheme

In Scheme, we program with functions (" pro-
cedures").

e A function's arguments are different from

Logic Programming and Prolog

Logic programming languages are not proce-
dural or functional.

o Specify relations between objects

— larger(3,2)

— father (tom, jane)

e Separate logic from control:

— Programmer declares what facts and relations
are true.

— System determines how to use facts to solve
problems.

— System instantiates variables in order to make
relations true!

e Computation engine: theorem-proving and recur-
sion (Unification, Resolution, Backward Chaining,
Backtracking)

— Higher-level than imperative languages

Logic Programming

A program consists of facts and rules.

Running a program means asking queries.

Jumping Right In

Suppose we state these facts:

male(albert) . parent(albert,edward) .
female (alice). parent(victoria,edward).
male(edward) . parent(albert,alice) .

female (victoria) . parent(victoria,alice).

We can then make queries:

?- male(albert) .
Yes

7- male(victoria).
No

?- female(Person).
Person = alice;
Person = victoria;
No

7- parent (Person, edward).
Person = albert;

Person = victoria;

No

7- parent(Person, edward), female(Person).

Person = victoria;
No

The swi Interface on cdf

cdf} 1s
family.pl

cdfl swi
Welcome to SWI-Prolog (Multi-threaded, Version 5.2.11)

We can also state rules, such as this one:

sibling(X, Y) :- parent(P, X),
parent (P, Y).

Then the queries become more interesting:

?- sibling(albert, victoria).
No

?- sibling(edward, Sib).
Sib = edward;

Sib = alice;

Sib = edward;

Sib = alice;

No

7- trace.
Yes
[tracel

[trace] ?- parent(Person, edward).

[trace] 7- parent(Person, edward).

Copyright (c) 1990-2003 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free soi
and you are welcome to redistribute it under certain conditior
Please visit http://www.swi-prolog.org for details.

the function’s value.

The language tries to find one way
(or more) to prove that the query is true.

Call: (7) parent(_G28, edward) 7 creep <- CR to continue
. . . Exit: 1] ?
e Give a single Scheme function, we can only xit: (7) parent(albert, edward) ? creep

ask one kind of question: Person = albert ;
Redo: (7) parent(_G28, edward) 7 creep

Exit: (7) parent(victoria, edward) 7 creep

This may have the side effect of freezing

. [i (=
variable values. For help, use ?- help(Topic). or ?- apropos(Word).

Here are the argument values; tell me

what is the function’s value. . ?- [family’]. < -- load file family.pl i .
e The language determines how to do all of % family compiled 0.00 sec, 5,264 bytes Person = victoria
this, not the progna Yes Yes
In Prolog, we program with relations. [debug] ?7-

e How does the language do it? Using unifi-
cation, resolution, and backtracking.

e There is no bias; all arguments are the ?- parent(Person, edward).

same. (0) Call: parent(_57,edward) 7

- s o o
. i i garscn _ a?b:rtt . < ;" to get more (0) Exit: parent(albert,edward) ?
e Given a single Prolog predicate, we can ask N:““‘ = victoria; Person = albert;

(0) Redo: parent(albert,edward) ?
(0) Exit: parent(victoria,edward) ?
Person = victoria

many kinds of question:

Here are some of the argument val- 7- parent (Person, edward). Yes
ues, tell me what the others have to Person = albert <—————m——mmm-mm “an, CR, space to break [trace]
be in order to make a true statement. Yes

7- notrace.
Yes

?7- parent (Person, edward).

Person = albert;
Person = victoria;
No

?7- halt.

cdfy,

Horn Clauses
(Rules)

A Horn Clause is: C(—hl/\h2/\h3/\."/\h"

e Antecedents: conjunction of zero or more
conditions which are atomic formulae in
predicate logic

e Consequent: an atomic formula in predi-
cate logic

Meaning of a Horn clause:

e “The consequent is true if the antecedents
are all true”

e c is true if hy, hp, hz, ..., anb, are all
true

12

cdf’ pl

Welcome to SWI-Prolog (Multi-threaded, Version 5.2.11) ...

For help, use ?- help(Topic). or ?- apropos(Word).

7- [family].
[family loaded]
Yes

?7- parent (Person, edward).
Person = albert;

Person = victoria;
No

--—- edit family.P and remove parent(albert,edward).

?- [’family’].

% family compiled 0.00 sec, 5,200 bytes
Yes

7- parent (Person, edward).

Person = victoria;
No

?- halt.
cdfy,

Horn Clause Terminology
e Horn Clause = Clause
e Consequent = Goal = Head
e Antecedents = Subgoals = Tail
e Horn Clause with No Tail = Fact
e Horn Clause with Tail = Rule

In Prolog, a Horn clause

ckhll\."/\h"
is written
c:-hiy, , ha

Syntax elements: -t 4

Some Prolog Syntax

Lexical Rules:
e Variables are capitalized.
e Constants begin with a lower case letter.

e Predicate names begin with a lower case
letter.

Simplified Grammar:

<clause> ::= <pred> |

<pred> :- <pred> { , <pred> } .
<pred> ::= <pname>‘(’ <term> { , <term> } ‘)’

<term> ::= <int> | <atom> | <var>

Note: No blank between predicate name and
opening bracket.

Prolog Horn Clause Examples
A Horn clause with no tail:
male(albert).

I.e., a fact: albert is a male dependent on no
other conditions

A Horn clause with a tail:

father(albert,edward):-
male(albert), parent(albert,edward).

I.e., a rule: albert is the father of edward if al-
bert is male and albert is a parent of edward'’s.

Prolog Queries

A query is a proposed fact that is to be proven.

e If the query has no variables, returns yes/no.

e If the query has variables, returns appro-
priate values of variables (called a substi-
tution).

Meaning of Prolog Rules
Without Variables
A proleg rule must have this form:

¢ '!—ag, a2, a3z, -, Oan-

which means in logic:

aiANapgANaz A---ANan = cC.

Restrictions

e There can be zero or more antecedents,
but they are conjoined; we cannot disjoin
the

e There cannot be more than 1 consequent.

15

Bending the Restrictions
Getting disjoined antecedents
Example: a1 VapyVazV —c.
Solution:
Getting more than 1 consequent, conjcined
Example: a1 Aax Aaz = ¢1 Aco.

Solution:

Getter more than 1 consequent, disjoined
Example: a3 Aax Aaz = c1 Veo.

Solution:

Meaning of Prolog Rules
With Variables

Example:

isaMother(X) :- female(X), parent(X, Y).
Logic:
parent(X,Y) A female(X) D isaMother(X).

But this is meaningless without quantifiers for
the variables.

The rule

A Prolog rule of this form (n > 0,m < n,k > 0):
(X1, - Xp) 1= a(X1, - Xm, Y1, - ¥3).

means:
VX1, Xn
Y, Y [a(Xy, - X, Y1, - Y2) D e(Xn, -+ Xn)]]

20

Why Can't We
Disjoin Consequents?

Why did the designers of Prolog disallow this?

Sample run

cdf¥ pl
Welcome to SWI-Prolog (Multi-threaded, Version 5.2.11).°°
?- [*family’].
Warning: (./family.pl:50):
Singleton variables: [Y]
% family compiled 0.00 sec, 5,528 bytes

?- isaMother(X).

X = victoria;
X = victoria;
No

21

Logic Review

Rule Ordering and Unification

. rule ordering used in search

. unification requires two instances of the

same variable in the same rule to get the
same value

. unification does not require differently named

variables to get different values: hence,
sibling(edward,edward).

. all rules searched if requested by ';’

22

Horn Clauses with Variables

Variables may appear in the antecedents and
consequent of a Horn clause:

e C(Xq,... ., Xn) - h(Xq,....Xpn).

“For all values of Xji,...,Xp, the formula
c(X1,...,Xpn) is true if the formula h(Xq,...,Xn)
is true”

C(Xl,. - ,Xn) - h(X],. . ,Xn,Yl,. . -Yk)-

“For all values of Xq,...,Xy, the formula
c(X1,...,Xp) is true if there exist values of
Y1....,Yg such that the formula h(X1,...,Xn,Y1,.
is true”

How Prolog Handles a Query

Example 1
Database:
1) male(tom).
2) male(peter).
3) male(doug).
4) female(susan).
5) male(david).
6) parent(doug, susan).
7) parent(tom, william).
8) parent(doug, david).
9) parent(doug, tom).

10) grandfather(GP, GC) :- male(GP),
parent (GP, X) ,
parent (X, GC).

Query:

| ?- grandfather(X,Y).

23

Trace it by hand

Trace it by hand

24

28

Trace it in Prolog

[trace] 7- grandfather(X,Y).
Call: (7) grandfather(_G28, _G284) 7 creep
Call: (8) male(_G283) 7 creep
Exit: (8) male(tom) ? creep
Call: (8) parent(tom, _L205) ? creep
Exit: (8) parent(tom, william) ? creep
Call: (8) parent(william, _G284) ? creep
Fail: (8) parent(william, _G284) ? creep
Redo: (8) male(_G283) ? creep
Exit: (8) male(peter) ? creep
Call: (8) parent(peter, _L205) ? creep
Fail: (8) parent(peter, _L205) ? creep
Redo: (8) male(_G283) ? creep
Exit: (8) male(doug) ? creep
Call: (8) parent(doug, _L205) ? creep
Exit: (8) parent(doug, susan) ? creep
Call: (8) parent(susan, _G284) 7 creep
Fail: (8) parent(susan, _G284) ? creep
Redo: (8) parent(doug, _L205) ? creep
Exit: (8) parent(doug, david) ? creep
Call: (8) parent(david, _G284) ? creep
Fail: (8) parent(david, _G284) 7 creep
Redo: (8) parent(doug, _L205) 7 creep
Exit: (8) parent(doug, tom) ? creep
Call: (8) parent(tom, _G284) ? creep
Exit: (8) parent(tom, william) ? creep
Exit: (7) grandfather(doug, william) ? creep

X = doug
Y = william
Yes
25
Trace it in Prolog
[trace] ?7- sibling(alice,Asib).
Call: (7) sibling(alice, _G284) 7 creep
Call: (8) parent(_L205, alice) ? creep
Exit: (8) parent(albert, alice) ? creep
Call: (8) parent(albert, _G284) ? creep
Exit: (8) parent(albert, edward) ? creep
Exit: (7) sibling(alice, edward) ? creep
Asib = edward ;
Redo: (8) parent(albert, _G284) ? creep
Exit: (8) parent(albert, alice) ? creep
Exit: (7) sibling(alice, alice) ? creep
Asib = alice ;
Redo: (8) parent(_L205, alice) ? creep
Exit: (8) parent(victoria, alice) 7 creep
Call: (8) parent(victoria, _G284) 7 creep
Exit: (8) parent(victoria, edward) ? creep
Exit: (7) sibling(alice, edward) ? creep
Asib = edward ;
Redo: (8) parent(victoria, _G284) ? creep
Exit: (8) parent(victoria, alice) 7 creep
Exit: (7) sibling(alice, alice) ? creep
Asib = alice ;
No
29

Prolog Search Trees

e Each node is an ordered list of goals.

Each edge is labelled with the variable bind-
ings that occurred due to applying a rule.

(The binding are in effect throughout the
subtree.)

Each leaf represents either success or fail-
ure.

26

The Anonymous Variable

If a rule has a variable that appears only once,
that variable is called a “singleton variable”.

Its value doesn’t matter — it doesn’t have to
match anything elsewhere in the rule.

isaMother(X) :- female(X), parent(X, Y).

Such a variable consumes resources at run time.

We can replace it with “", the anonymous
variable. It matches anything.

If we don't, Prolog will warn us.
30

Example 2

Database:

1) male(albert).

2) female(alice).

3) male(edward).

4) female(victoria).

5) parent(albert,edward).

6) parent(victoria,edward) .

7) parent(albert,alice).

8) parent(victoria,alice).

9) sibling(X, Y) :- parent(P, X), parent(P, Y).

Query:

?7- sibling(alice,Asib).
Asib edward ;
Asib alice ;
Asib = edward;
Asib = alice ;

No

?7- sibling(Asib, alice).
Asib = edward ;

Asib edward ;

Asib = alice ;
Asib = alice ;
No

27

Procedural Semantics of Prolog
Notice the recursion in this algorithm: “find”
calls “find”. This reasoning is recursively ap-

plied until we reach rules that are facts.

This process is called Backward Chaining.

31

Logic Programming vs. Prolog Logic Programming vs. Prolog

cousin(X,Y) :- parent(W,X), sister(wW,Z),

Logic Programming: N t inisti
parent(Z,Y). ogic ogra g ondeterministic

e Arbitrarily choose rule to expand first

e Arbitrarily choose subgoal to to explore
first

e Results don't depend on rule and sub-
goal ordering

cousin(X,Y) :- parent(W,X), brother(W,Z),
parent(Z,Y).

| ?- cousin(X jane). % a query

Rul | ing:
ule and Goal Ordering Prolog: Deterministic
e There are two rules for cousin o Expand first rule first
e Which rule do we try first? e Explore first subgoal first
e Each rule for cousin has several subgoals e Results may depend on rule and subgoal

e Which subgoal do we try first? ordering

32 33

