CSC 324: Principles of
Programming Languages

Procedural Language Design Issues

Readings:
Sebesta 5th & 6th ed.: 5.3,5.4,5.8-5.10;
9.1-9.5,9.11; 10.1-10.5

©Suzanne Stevenson 2001

Parameter Passing

Matching arguments with parameters:

1. Positional association:

e Arguments are associated with

parameters left to right

2. Keyword association:

e Arguments are given tags, eg:
procedure plot (x,y: real; penup:

boolean)

plot(0.0, 0.0, penup=>true)
plot (penup=>true, x=>0.0, y=>0.0)

Procedural Language Design Issues

Procedures: A Control Abstraction

e A block of code that can be called

(imperative)

e A lambda expression (functional)

e A horn clause (logic programming)

Procedures modularize program

structure

Parameter Passing

3. Optional arguments:

e E.g., C printf(...)

Extra arguments are packaged into

some structure

Passed to special parameter

Components of a Procedure

1. Name

2. Formal parameters, optionally with types

e parameter (formal parameter)

Local variable whose value is received

from caller
e argument (actual parameter)

The info passed from caller to callee
3. Body, which is a syntactic construct in
the language:

e Block, i.e., declarations and

statements
e Expression
e Conjunction of terms

4. Optional result, optionally with a type

3

Passing Modes

How to treat arguments
(pass-by-x/call-by-x):

1. Pass by value

(Java, C, C++, Pascal, Ada, Scheme, Algol68)

2. Pass by result
(Ada)

3. Pass by value-result

(some Fortrans, Ada)

4. Pass by reference

(Java objects, C++ with &, some Fortrans, Pascal with

var, COBOL)

5. Pass by name

(Algol 60)

{ c: arrayl[1.

Procedure Implementation Issues

The general notion of a procedure leaves a

number of points unspecified:

e How to pass parameters when the

procedure is called

e How to maintain local state and control

information

e How to access non-local names within a

procedure body

Example for Passing Modes

.10] of integer;
m,n integer;
procedure r (i , j : integer) begin
i=1i+1;
j=3+2
end r;

m := 2;
n := 3;
r(m,n); // call 1
write m, n ; // print 1

m := 2;

cl[1] := 1;

c[2] := 4;

c[3] := 8;

r(m,c[m]); // call 2
write m,c[1],c[2],c[3]; // print 2

Pass by Value

e Initial values of parameters copied from
current values of arguments

Final values of parameters are “lost” at
return time (like local variables).

e Example:
at call 1: i=2 j=3
print 1:
at call 2: i=2 j=4
print 2:

Benefit: Arguments protected from

changes in procedure.

Problem: Requires copying of values:
costs time and space, especially for large
aggregates.

Pass by Value-Result

e Initial values of parameters copied from

current values of arguments

e Final values of parameters copied back

to arguments

= Combines functionality of pass by value

and pass by result for same parameter.

13

Pass by Result
e No initial values of parameters

e Final values of parameters are copied

back to arguments

e Example: does not work, as written

= For output values only. Used to indicate
that a parameter is intended solely for

returning a result.

10

Pass by Value-Result (Example)

e call 1:
— initial: i= j=
— final: i= ji=
— return: m and n set to:

e print 1:

e call 2:
— initial: i= j=

— final: i= j=

— return: which element of c is
modified, c[2] or c[3]7

e print 2:

— if c[2] is modified:
— if ¢c[3] is modified:

14

Pass by Result (Example)

Suppose proc r initializes i and j to O:

e call 1:

— final values of i and j:
— m and n are set to:

e print 1:

e call 2: more problematic

— final values of i and j:
— which element of ¢ is modified, c[1] or

cl217?
e print 2:

— If c[1] is modified:
— If c[2] is modified:

11

Further Specifying Pass by Result

With pass by result or pass by value-result,
order of assignments and address

computations is important.

Options:

1. Perform return address computations at
call time:
On second return:
m set to 3; c[2] set to 6

print 2:

15

Problems with Pass by Result

e Requires copying of values: costs time
and space, especially for large
aggregates. (Cf. Call by value.)

e What if the argument is not a variable?
E.g., r(1, 2);

e What if a variable is used twice in the
argument list?

E.g., r(m, m);

e What about calculations to determine
locations of arguments?
E.g., which c[m]?

12

Further Specifying Pass by Result
(cont'd)

2. Perform return address computations at

return time:
(2) Before any assignments:

On second return: same as above, but
might not be if procedure has

side-effects

(b) Just before that assignment, in order:
On second return:
m set to 3; c[3] set to 6

print 2:

16

Pass by Reference

e Formal parameters are pointers to the

actual parameters (arguments).

e Address computations are performed at

procedure call.

e Changes to the formal parameters are

thus changes to the actual parameters.

17

Aliasing

Pass by Reference:

e The identifiers x and y refer to the same

location in call of p.

e Result of “write y"7

Pass by Value-Result:

e The identifiers x and y refer to different
locations in call of p.

e Result of “write y"7

21

Pass by Reference (Example)

e call 1:

— initial: i= j=
— final: i= j=
— return: m, n are:

e print 1:

e call 2:

— initial:
— final:
— return: m, c[2] are:

e print 2:
More Aliasing
{1i, j, k : integer ;
procedure q (a, b : integer) begin
a :=1i * b;
b :=1i % b;
end q;
i:=2; j :=3; k 1= 4;
q(i,3);
qk,k);
}
e First call has global-formal aliases:
—aand i
—Dband j

e Second call has formal-formal alias:
—aandb

Pass by Reference

e Benefit: No copying for variables

e Problem: allow redefinition of

expressions and constants?

e Problem: Leads to aliasing

— two or more visible names for same

location

— can cause side effects not visible from
code itself

18 19

Pass by Name

e A “name” for the argument is passed in
to procedure

e Like textual substitution of argument in
procedure

e Thus address computations are done

whenever parameter is used

e Like pass-by-reference for scalar

parameters

22 23

Aliasing

{y : integer ;
procedure p (x : integer) begin
x :=x + 1;

X :=x+y

p(y);

write y

20

Pass by Name (Example)

e Example:
— call 1: m, n set to:
— print 1:
— call 2: m, c[m] set to:
— print 2:

e Benefit: same as pass by reference

e Problems: Inefficient, requires a thunk:

— essentially a little program is passed
that represents the argument

— evaluates argument in caller’s

environment

24

Summary of Parameter Passing Modes

e Pass by value

e Pass by result

e Pass by value-result

e Pass by reference

e Pass by name

25

Activation Trees and Stack Frames

Running a program corresponds to a

traversal of (one of) its activation tree(s).

We can represent the traversal of the tree
using a stack.

Each item on the stack is called a frame.

= The stack of frames not only maintains
the call sequence info, but also keeps track
of the local and non-local environment for

each procedure.

29

Procedure Activations

Lifetime of procedure:
e Begins when control enters activation
(call)
e Ends when control returns from
activation

Activation Tree:

e Shows flow of control from one
activation to another

e Root: Main program

e Edges: Call from one procedure to
another (read left to right)

e | eaves: Procedures that call no other
procedures

26

Content of Stack Frames

e Run-time stack contains frames for main

program and each active procedure.

e Each stack frame includes:

1. Pointer to stack frame of caller
(Control Link)

2. Return address (within caller)

3. Mechanism to find non-local variables
(Access Link)

4. Storage for parameters

. Storage for local variables

6. Storage for temporary and final values

(&3]

e In 2 language with first-class functions,

this is more complex.

30

Example
main
procedure P
begin
procedure S begin ... end S;

if random(1) < 1 then P()
else { sO; Q0O }
end P;
procedure { begin ... end Q;
P;
Q;
P;

end

27

Procedure Activation
and Run-time Stack

On a call:

1. Set up stack frame on top of run-time
stack (current context)

2. Do the real work of the procedure body

3. Release stack frame and restore caller’s
context (as new top of stack)

Run-time stack establishes a context for a

procedure invocation

31

Sample Activation Trees

28

Context of Procedures

Two contexts:

e static placement in source code (same
for each invocation)

e dynamic run-time stack context
(different for each invocation)

Name Resolution: Given the use of a
name (variable or procedure name), which
instance of the entity with that name is
referred to?

= Both static and dynamic contexts play a

role in this determination.
32

Scope

Each use of a name must be associated
with a single entity at run-time (ie, an

offset within a stack frame).

The scope of a declaration of a name is the
part of the program in which a use of that

name refers to that declaration.

The design of a language includes scope
rules for resolving the mapping from the use

of each name to its appropriate declaration.

33

Lexical Scope

e Names are associated with declarations

at compile time

e Find the smallest block syntactically
enclosing the reference and containing a
declaration of the name

e Example:

— The reference to n in W is associated
with the declaration of nin L

— The output is?

Benefit: Easy to determine the right
declaration for a name from the text of the

program.
37

Some Terminology

A name is:

e visible to a piece of code if its scope
includes that piece of code.

e local to a piece of code (block/
procedure/main program) if its
declaration is within that piece of code.

e non-local to a piece of code if it is
visible, but its declaration is not within

that piece of code.

A declaration of a name is hidden if
another declaration supersedes it in scope.

34

Dynamic Scope

e Names are associated with declarations

at run time

e Find the most recent, currently active
run-time stack frame containing a
declaration of the name

e Example:

— The reference to n in W is associated
with two different declarations at two

different times

— The output is?

38

Scope Rules

Two choices:

1. Use static context: lexical scope

2. Use dynamic context: dynamic scope

For local names, these are the same.

= Harder for non-local names, and not
necessarily the same for both types of

scope.

35

Dynamic Scope: Pros and Cons

Benefit: reduces need for parameters.

Problems:
e hard to understand behavior from the
text alone.
e renaming variables can have unexpected
results.
e no protection of one's local variables
from a called procedure.

(Ie, if A calls B, B can modify A's local variables.)

e can be slower to execute.

NOTE: Most languages use lexical scope,
although early interpreted languages used
dynamic scope because of the flexibility and

ease of implementation.
39

Scope Example

program L;
var n: char; {n declared in L}

procedure W;
begin

write(n); {n referenced in W}
end;

procedure D;
var n: char; {n declared in D}

begin
n:= ’D’; {n referenced in D}
W
end;
begin
n:= °L’; {n referenced in L}
W;
D
end.

36

Scoping and the Run-time Stack

Access link shows where to look for

non-local names.

Static Scope:

Access link points to stack frame of
the lexically enclosing procedure

(total no. links to follow determined at

compile time)

Dynamic Scope:

Access link points to stack frame of
caller

40

Nested Procedures and Static Scope

program
a,b,c : integer; //
procedure r
a : integer; //
.a...b...c
end r; //
procedure p
¢ : integer; //
procedure s
d,e : integer //
..a...b...c ...
r; //
end s;
r; //
s; //
end p;
P; //
end
Dynamic Scope Example
program

a : integer;
procedure z
a : integer; ...
a :=1;
¥
output a;
end z;
procedure w
a : integer; ...
a = 2;
¥
output a;
end w;
procedure y ...
a := 0;
end y;
a :=b5;
z;
w;
output a;
end

~

41

45

Nesting Depth

Nesting depth of a procedure is how many

lexical levels deep it is.
e Main program has nesting depth 1.
e Body of p has nesting depth 2.

e Body of s has nesting depth 3.

Note: Declarations of p and r have nesting

depth 1, but declarations and statements

within p and r have nesting depth 2.

42

Optimizing Variable Access

Problem: Accessing non-local names

requires following links up the access link

chain.

Solution for lexical scoping only:
Maintain a vector of currently-active

static-chain frames.
e Called the display
e Pioneered in Algol60

e Makes addresses directly accessible

46

Nesting Depth and Access Links

procedure v

begin /* v */
...u...; /* use of u */

end; /* v */

To determine the access link for name u,
follow n — m access links from proc v in
which u is used, where n is the nesting

depth of the body of v and m is the nesting

depth of the declaration of u.
43

Using a Display

e If a2 procedure is at nesting depth n, it
may have to follow n — 1 static links to
find variable addresses

e Display is an array of pointers to stack

frames

e A variable is stored at an offset in the
frame pointed to by the i'th display
element, where i is the nesting level of

procedure where variable was declared

e Display must be maintained along with

run-time stack

47

Run-Time Stack Trace

Trace through above program, showing

snapshot of run-time stack at points 1, 3,

5, 8, 5 (again).

Display in Static Example

44

For example, during execution of proc s:

D[1]: Pointer to stack frame for main pgm

D[2]: Pointer to stack frame for procedure p

D[3]: Pointer to stack frame for procedure s

Address of d is D[3]+4+Offset+0

]
e Address of e is D[3]4Offset+1
e Address of c is D[2]4+Offset+0
Address of a is D[1]4+Offset+0
Address of b is D[1]4+Offset+1

48

Maintaining the Display

49

Summary:
Procedural Language Design Issues

Components of a procedure
— name

— parameters

— body

— optional result

Parameter passing

— pass by value

— pass by result

— pass by value-result

— pass by reference

— pass by name

Aliasing through parameter passing
Procedure Activations

Stack frames

Lexical scope

Dynamic scope

Implementing scope with stack frames

Displays

50

