Warmup your Diagnostic SKills....

In the following slides we present 4 versions
of the " Allatoms” procedure, designed to take
an arbitrary list as input and return a flat list
containing the atoms in the initial list.

Each version has a problem, that is corrected
in the next. The final version is correct.

72

Allatoms: version 2

(define a2
(lambda (1st)
(cond ((null? 1st) ’())

((= (length 1st) 1) 1st)

(else (append (if (pair? (car 1lst))
(a2 (car 1st))
(list (car 1st)))

(a2 (cdr 1st))))

1]1=> (a2 ’(a (b c) d))
;Value 4: (a b c d)

11=> (a2 ’((a O c) (@) (e (£ (g)) h)))
;Value 5: (a () c (@) (e (£ (g)) h))

1]1=> (a2 ’((b c)))
;Value 6: ((b c))
74

Allatoms: version 1

(define al
(lambda (1st)
(cond ((null? 1st) °(Q))
((= (length 1st) 1) 1st)
(else (cons (a1l (car 1st))
(a1l (cdr 1st))))

11=> (a1 ’((b ©)))
;Value 1: ((b ¢))

11=> (a1 ’(a (b c) d))
;The object b, passed as the first argument
to length, is not the correct type.

73

Allatoms: version 3

(define a3
(lambda (1st)
(cond ((null? 1st) °(Q))
(else (append (if (pair? (car 1st))
(a3 (car 1lst))
(list (car 1st)))
(a3 (cdr 1st))))

11=> (a3 *((b ©)))
;Value 7: (b c)

1]=> (a3 ’(a (b c) d))
;Value 8: (a b ¢ d)

11=> (a3 ’((a O c) (@) (e (£ (g)) D))
;Value 9: (a2 O cde f g h)

75

Allatoms: version 4

(define a4
(lambda (1st)
(cond ((null? 1st) Q))

((pair? 1st) (append (a4 (car 1st))
(a4 (cdr 1st))))

(else (list 1st))

)

This is simpler, but changes the specification

of the procedure:

11=> (a4 ’((a O c) (@) (e (f (g)))
;Value 10: (a c d e £ g h)

11=> (a4 ’(a . b))
;Value 11: (a b)

1 1=> (ad ’a)
;Value 12: (a)
76

Review from Last Day

list, cons))

Testing for Equality (eq?, =, eqv?, equal?)

e Example of car-cdr Recursion (counting atoms ex.)

Efficiency
— helper functions

— local variable binding (let, let*)

e Higher Order Procedures
— Procedures as input

— Procedures as returned values

Built-in procedure map

Built-in procedure eval

— ...and we pick up from here...

77

Applying Procedures with apply

1 1=> (apply + (1 2 3))
;Value: 6

1 1=> (apply append ’((a) (b)))
;Value 5: (a b)

11=>
(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else

(apply + (map atomcount s)))))
;Value: atomcount

1]=> (atomcount ’(a (b) c))
;Value: 3

78

Higher-order Procedures: reduce

Lists (cons cells, proper list, creating lists (append,

(define (reduce op 1 id)
(if (null? 1)
id
(op (car 1)
(reduce op (cdr 1) id))
))

A binary — n-ary procedure.

The reduce procedure takes a binary operation
and applies it right-associatively to a list of an

arbitrary number of arguments.

NOTE: reduce is not equivalent to apply.

79

Higher-order Procedures: reduce

(reduce + (1 2 3) 0) = 6:

(reduce + (1 2 3) 0)

(+ 1 (reduce + (2 3) 0))

(+ 1 (+ 2 (reduce + ’(3) 0)))

(+ 1 (+ 2 (+ 3 (reduce + () 0))))
(+1 (2 (+30)))

6

Note: (+ 1 2 3) = 6

(reduce / (24 6 2) 1) = 8:

(reduce / ’(24 6 2) 1)

(/ 24 (reduce / ’(6 2) 1))

(/ 24 (/ 6 (reduce / ’(2) 1))

(/ 24 (/ 6 (/ 2 (reduce / >() 1))
(/24 (/6 (/21

8

Note: (/ 24 6 2) = 2

80

Example Practice Procedures

e cdrLists: given a list of lists, form new list
giving all elements of the cdr’'s of the sub-
lists.

((12)(345)(6)) =>(245)

e swapFirstTwo: given a list, swap the first
two elements of the list.
(1234)=(2134)

e swapTwolnLists: given a list of lists, form
new list of all elements in all lists, with first
two of each swapped.

((123)(4)(56)) = (213465)

e addSums: given a list of numbers, sum the
total of all sums from 0 to each number.
(135) = 22

82

Higher-order Procedures: reduce

Given union, which takes two lists representing
sets and returns their union:

1 1=> (apply union ’((1 3)(2 3 4)))
;Value 21: (1 2 3 4)

1 1=> (apply union ’((1 3)(2 3)(4 5)))
;The procedure #[compound-procedure union]
;has been called with 3 arguments;

;it requires exactly 2 arguments.

1 1=> (reduce union ’((1 3)(2 3)(4 5)) *0))
;Value 22: (1 2 3 4 5)

Question: How would you have to change
reduce tO be able to take intersection as its
function argument?

81

More Practice Procedures

e addToENnd: add an element to the end of
a list.
(addToEnd 'a '(abc)) = (abca)

e revLists: given a list of lists, form new list
consisting of all elements of the sublists in
reverse order.
((12)(345)(6))>(654321)

e revListsAll: given a list of lists, form new
list from reversal of elements of each list.
((12)(345)(6))=>(215436)

83

; Return a new list containing only the elements of 1list

Passing procedures: prune ; that pass .the test.
; Precondition:

Suppose we want a procedure that will test ev-
ery element of a list and return a list containing (defi
efine prune

only those that pass the test. (lambda (test 1st)
(cond ((null? 1st) ’())
((test (car 1st))
We want it to be very general: it should be (cons (car 1st)

able to use any test we might give it. How will (prune test (cdr 1st))

we tell it what test to apply?)
(else (prune test (cdr 1st)))

)

)
What should a procedure call look like?

Example: Prune out the elements of myList

that are not atoms. 1 1=> (define (atom? x) (not (pair? x)))
;Value: atom?

Sample run

1 1=> (prune atom? *((3 1) 4 (xy z) (x) y O))
;Value 12: (4 y ()
Now let’s write the procedure.
1 1=> (prune null? () (@abc) (1 2) O (O) x (y w) 2)))
sValue 13: (OO ())

84 85

Write calls to prune that will prune myList in
these ways: Back to Unnamed Procedures

e Prune out elements that are null. Exercise: What is the value of each of these

Scheme expressions?
e (Assume myList contains lists of integers.)
Prune out elements whose minimum is not
at least 50. ((lambda (x) (coms x ())) ’y)
Hint: there is a built-in min procedure. ;

((lambda (x y) (> (length x) (length y)))

e (Assume myList contains lists.) Prune out
’(abc) ’(d))

elements that themselves have more than 2
elements. ’

((lambda (x) (1ist? x)) ’(lambda (x) (1ist? x)))

This is becoming tedious. We need to declare R
a procedure for each possible test we might
dream up. ((lambda (x y) (append x y)) (1 2) °(3 4 5))

86 87

Using unnamed procedures to call prune

1 1=> (define myList
() (abec) (12) O O) & (yw 2)))
;Value: mylist

1]=> (prune (lambda (x) (not (null? x))) myList)
;Value 4: ((abc) (1 2) (O)) (x (y w 2))

1 1=> (define myList ’((59 72 40) (85 70 88 56)))
;Value: mylist

1]=> (prune (lambda (x) (> (apply min x) 50)) myList)
;Value 5: ((85 70 88 56))

1 1=> (define myList ’((23 34) (10 1 3 4) () (2 3 4)))
;Value: mylist

1 1=> (prune (lambda (x) (<= (length x) 2)) myList)
;Value 6: ((23 34) ()

88

Passing Procedures: Bubblesort

90

Uses of unnamed lambda-expressions

Example: Suppose we have tables of data (rep-
resented using Scheme lists), and procedures
that can do things like select out the rows of
a given table that pass some test.

Suppose we want the user to be able to specify
any criterion they might want. Examples:

e Retrieve students where gpa > 3.0

e Retrieve courses where classSize < 100

e Retrieve profs where building = SF

It would be tedious to write a named procedure
for every single criterion that the user might
specify.

Instead, we can have the program construct an
appropriate lambda-expression, based on the
user’'s query.

89

What we want in the end

Sample run of procedure bubblesort

eddie 1% scheme
Scheme Microcode Versiom ...

1]=> (load "sort.scm")

;Loading "sort.scm" -- done
;Value: bubblesort

1]=> (bubblesort ’(3 415 0 2 3) <)
;Value 1: (01 2 3 3 4 5)
1]=> (bubblesort
’((abec) (2 1234 O (zz2) (yy)
(lambda (x y) (< (length x) (length y))))
;Value 2: (() (@) (yy) (zzz) (abec) (1234))

1]=> (trace helper)
;No value

1]=> (trace bubbleFirstN)
;No value

91

; Note: #[compound-procedure ...
; to #[fn] and the spacing has been reduced to make
; the slide more readable.

fn] has been changed

1]=> (bubblesort (3 4150 2 3) <)

[Entering #[helper] Args: (34150 2 3) #[<]
[Entering #[bubblefirstn] Args: (3 4 1 5 0 2 3) #[<]
[(3140235)

<== #[bubblefirstn] Args: (34 1 5 0 2 3) #[<]
[Entering #[helper] Args: (3140 2 35) #[<]
[Entering #[bubblefirstn] Args: (3 1 4 0 2 3 5) #[<]
[(1302345)

== #[bubblefirstn] Args: (3 1 4 0 2 3 5) #[<]
[Entering #[helper] Args: (1 30 2 3 4 5) #[<]
[Entering #[bubblefirstn] Args: (1 3 0 2 3 4 5) #[<]
[(1023345)

== #[bubblefirstn] Args: (1 3 0 2 3 4 5) #[<]
[Entering #[helper] Args: (1 0 2 3 3 45) #[<]
[Entering #[bubblefirstn] Args: (1 0 2 3 3 4 5) #[<]
[(0123345)

== #[bubblefirstn] Args: (1 0 2 3 3 4 5) #[<]
[Entering #[helper] Args: (01 2 3 3 4 5) #[<]
[Entering #[bubblefirstn] Args: (0 1 2 3 3 4 5) #[<]

92

Calling Procedure

; Precondition: smaller? is a procedure that can be
; applied to any two elements of 1st. It should return

; #t iff the first argument is “smaller” than the second.

(define bubblesort
(lambda (1st smaller?)
(helper 1st smaller? (- (length 1st) 1))
)

94

6]
6]

6]
5]
5]

5]
4]
4]

4]
3]
3]

3]
2]
2]

[(0123345)

== #[bubblefirstn] Args: (0 1 2 3 3 4 5) #[<]
[Entering #[helper] Args: (012 3 3 4 5) #[<]
[Entering #[bubblefirstn] Args: (0 1 2 3 3 4 5) #[<]
[(0123345)

== #[bubblefirstn] Args: (0 1 2 3 3 4 5) #[<]

[Entering #[helper]
[(0123345)

== #[helper] Args: (01 2 3 3 4 5) #[<]
[(0123345)

== #[helper] Args: (01 2 3 3 4 5) #[<]
[(0123345)

== #[helper] Args: (01 2 3 3 4 5) #[<]
[(0123345)

== #[helper] Args: (1 0 2 3 3 4 5) #[<]

[(0123345)
<== #[helper]
[(0123345)

Args:

== #[helper] Args: (3140 2 35) #[<]
[(01233465)
== #[helper] Args: (34150 2 3) #[<]

;Value 3: (01 233 45)

93

Args: (01 2 3 3 4 5) #[<]

(1302345) #[<]

The Outer Loop

Helper procedure - actual outer loop

; Bubblesorts the first n elements of 1st. Returns a
; new list with the first n elements of 1st sorted,

; followed by the rest of 1st unchanged.

; Precondition: n < (length list).

(define helper
(lambda (1st smaller? n)

(if (<= n 0)
1st
(helper (bubbleFirstN 1lst smaller? n)
smaller?
(-n 1)
)
)

95

2]
1]
1]

1]
o]
0]
1]
2]
3]
4]
5]

6]

The Inner Loop

; Does a single " bubble run”.
; Precondition: n < (length 1lst)

(define bubbleFirstN
(lambda (1st smaller? n)
(cond ((=n 0) 1st)
((smaller? (car 1st) (cadr 1lst))
(cons (car 1st)
(bubbleFirstN (cdr 1lst)
smaller?
(- n 1))
)
)
(else (cons (cadr 1st)
(bubbleFirstN (cons (car 1st)
(cddr 1st))
smaller?

(- n 1))

Is our bubblesort procedure O(n?), where n is
the length of the original list, as it should be?
96

