Lists

A simple but powerful general-purpose datatyp.
(How many datatypes have we seen so far?)

(1 #t 1)
O
1 (@23 O

Building block: the cons cell.

I

1 0

2 3

Note: Sebesta uses NIL. That is LISP ggta-
tion! In Scheme, we use ().

Edquality Checking

The eq? predicate doesn't work for lists.

Why not?

1. (cons ’a ’()) makes a new list

2. (cons ’a ’()) makes a(nother) new list

3. eq? checks if its two args are the same

4. (eq? (cons ’a ’()) (coms ’a ’())) evaluates

to O (ie, #f)

Lists are stored as pointers to the first element
(car) and the rest of the list (cdr).

Symbols are stored uniquely, so eq? works on
them.
50

Things you should know about
Ccog, pairs and lists

The pairor cons cell is the most fundamental of Scheme’s
structured object types.

A list is a sequence of pairs; each pair's cdr is the next
pair in the sequence.

The cdr of the last pair in a proper list is the empty
list. Otherwise the sequence of pairs forms an improper
list. L.e., an empty list is a proper list, and and any pair
whose cdr is a proper list is a proper list.

An improper list is printed in dotted-pair notation with

a periocd (dot) preceding the final element of the list. A
pair whose cdr is not a list is often called a dotted pair

a7

Edquality Checking for Lists

For lists, need a comparison procedure to check
for the same structure in two lists. How might
you write such a procedure?

(define (equal? x y)
(or (and (atom? x) (atom? y) (eq? x y))
(and (not (atom? x)) (not (atom? y))

(equal? (car x) (car y))
(equal? (cdr x) (cdr y)))))

e (equal? ’a ’a) evaluates to #t

e (equal? ’a ’b) evaluates to O

e (equal? ’(a) ’(a)) evaluates to #t

e (equal? ’((a)) ’(a)) evaluates to ()

Note there is a built-in predicate procedure
equal?. Play arocund with it!
51

Creating lists

e Quote: "(1 (23) O) => (1 (23) OO)

or (quote (1 (2 3) O)) => (1 (23 N
e list: (list 1 ’(2 3) O) => (1 (2 3))
e Build it, piece by piece:

(cons 1 (cons (coms 2 (cons 3 ()))

(cons O O

e Appending lists:

(append 1st (4 5)) => ((1 (2 3) () 4 5))

cons vs. list: The procedure cons actually
builds pairs, and there is no reason that the
cdr of a pair must be a list, as illustrated on
the previous page.

The procedure list is similar to cons, except
that it takes an arbitrary number of arguments
and always builds a proper list.

E.g., (list ’a b ’¢c) — (a b ¢c)
48

More pre-defined predicates

e (null? a): Returns #t iff a is the empty list
(or #f, depending on the implementation).

e (pair? a): Returns #t iff a is a pair, i.e., a
cons cell.

o (number? a): Returns #t iff a is @ number.

Lots more in Dybvig §6.
Code as Data—Eval

Scheme code is simply data that is treated as
code. If you build an expression, using any
data processing technique, and you want to
evaluate it as code, use eval:

(define a (+ 4 6))
a => 10

(define b ’(+ 4 6))
b => (+ 4 6)

(eval b (O) => 10

More on this later...
52

Useful predicates

Testing for equality

(eq? a b): Returns #t iff a and b are the
same Scheme object. (Don't use eq? with
numbers!)

(= a b): Returns #t iff a and b are numeri-
cally equal. Pre: a and b must evaluate to
numbers.

(eqv? a b): Similar to eq?, but works for
numbers and characters. More expensive
than eq?, however.

(equal? a b): Returns #t iff a and b have
the same structure and contents. Thus, equal?
recursively tests for equality. The most ex-
pensive equality predicate.

Recommended Reading:
Dybvig §6.1, 2nd ed. (available online), or
Dybvig §6.2, 3rd ed.
49

Recursive Procedures: Counting

(define (atomcount x)
(cond ((null? x) 0)
((atom? x) 1)
(else (+ (atomcount (car x))
(atomcount (cdr x))))))

e (atomcount ’(1 2)) = 2
e (atomcount ’(1 (2 (3)) (5))) = 4:

(at 7(1 (2 (3)) (8)))
(+ (at 1) (at ((2 (3)) (8))))

(+ 1 (+ (at (2 (3))) (at ((5)))))

(+ 1 (+ (+ (at 2) (at ((3)))) (+ (at (5)) (at ()))))

(+1 (+ (+ 1 (+ (at () (at O)) (+ (+ (at 5) (at ())) 0)))
(+ 1 (+ (+ 1 (+ (+ (at 3) (at ())) 0)) (+ (+ 1 0) 0)))
1+ (1 ((+10)0) (+1 0))

(+1 (+(+1(+10)) 1)

(+1 (+ (+11) 1))

+1 (+21)

+13)

This is called “car-cdr-recursion.’
53

Efficiency Issues

Efficiency Issues

Problem: Evaluating the same expression twie.

Example:

(define (longest-nonzero x y)
(cond ((and (null? x) (null? y)) -1)
((> (length x) (length y))
(length x))
(else (length y))

»

What can you do if there is nc assignment
statement?

54

Higher-Order Procedures

Procedures as input values:

(define (all-num 1lst)
(or (null? 1st)
(and (number? (car 1st))
(all-num (cdr 1st))))
)
(define (all-num-f f 1st)
(cond ((all-num 1lst) (f 1st))
(else ’error))
)
1 1=> (all-num-f abs-list ’(1 -2 3))
;Value 1: (1 2 3)

1]=> (all-num-f abs-list ’(1 a))
;Value: error

58

Solution 1: Bind values to parameters in a
helper procedure.

(define (maximum x y)
(cond ((> x y) x)
(else y)
)

(define (longest-nonzero x y)
(cond ((and (null? x) (null? y)) -1)
(else
(maximum (length x) (length y)))
3

Note: There is a built-in max function.
Note 2: Helper procedures are an important

and useful tool!
55

Higher-Order Procedures

Procedures as returned values:

(define (plus-list x)
(cond ((number? x)
(lambda (y) (+ (sum-n x) y)))
((1ist? x)
(lambda (y) (+ (sum-list x) y)))
(else (lambda (x) x))

N
1 1=> ((plus-list 3) 4)
;Value: 10

1 1=> ((plus-list ’(1 3 5)) b)
;Value: 14

59

Efficiency Issues

Solution 2: Use a let or let* construct, that
binds variables to expression results.

(let ((varl exprl)
(varn exprn))
<vars are defined and can be used here>)

(let* ((varl exprl)

(varn exprmn))
<vars are defined and can be used here>)

56

Polymorphic and Monomorphic
Functions

e Polymorphic functions can be applied to
arguments of many forms

e The function length is polymorphic: it works
on lists of numbers, lists of symbols, lists
of lists, lists of anything

e The function square is monomorphic: it
only works on numbers

57

Built-In Higher-Order Procedures:
map

Higher-order Procedures: map

(define (map f 1)
(cond ((null? 1) °())
(else (cons (f (car 1))
(map £ (cdr 1))))

)

e map takes two arguments: a function and a

list
e map builds a new list whose elements are

the result of applying the function to each
element of the (old) list

60

e Example:

(map abs (-1 2 -3 4)) =
(123 4)

(map (lambda (x) (+ 1 x)) (-1 2 -3)) =
(0 3 -2)

e Actually, the built-in map can take more
than two arguments:

(map cons ’(a b c) "((1) (2) (3))) =
((a 1) (b 2) (c 3

61

What's Wrong Here??

Using eval to Correct the Problem

11=>
(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else (+ (map atomcount s)))
N
;Value: atomcount
1]=> (atomcount ’(a b))

;The object (1 1), passed as an argument
;to +, is not the correct type.

2 error>

Why doesn’t this work?

62

Applying Procedures with apply

1 1=> (apply + ’(1 2 3))
;Value: 6

1 1=> (apply append ’((a) (b)))
;Value 5: (a b)

11=>
(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else
(apply + (map atomcount s)))))

;Value: atomcount

1]=> (atomcount ’(a (b) c))
;Value: 3

66

(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else
(eval
(cons ’+ (map atomcount s)) ’()))
»
1]=> (atomcount ’(a b))

;Value: 2
1 1=> (atomcount ’((1) (2 3 (4)) ((((5))))))

;Value: 5

63

Higher-order Procedures: reduce

(define (reduce op 1 id)
(if (null? 1)
id
(op (car 1)
(reduce op (cdr 1) id))
»

A binary — n-ary procedure.
The reduce procedure takes a binary operation
and applies it right-associatively to a list of an

arbitrary number of arguments.

NOTE: reduce is not equivalent to apply.

67

Limitations of Using eval

Using eval to Evaluate Expressions

BUT: eval only works in the current defini-
tion of atomcount because humbers evaluate to
themselves.

11=> (+123)
;Value: 6

1 1=> (comns ’+ ’(1 2 3))
;Value 12: (+ 1 2 3)

1 1=> (eval (cons ’+ ’(1 2 3)) *())
;Value: 6

64

Higher-order Procedures: reduce

(reduce + (1 2 3) 0) = 6:

(reduce + ’(1 2 3) 0)

(+ 1 (reduce + ’(2 3) 0))

(+ 1 (+ 2 (reduce + ’(3) 0)))

(+ 1 (+ 2 (+ 3 (reduce + ’() 0))))
(+1 (+2 (+30))

6
Note: (+ 1 23) = 6

(reduce / ’(24 6 2) 1) = 8

(reduce / (24 6 2) 1)

(/ 24 (reduce / ’(6 2) 1))

(/ 24 (/ 6 (reduce / ’(2) 1)))

(/ 24 (/ 6 (/ 2 (reduce / *() 1))))
(/24 (/6 (/21)))

8
Note: (/ 24 6 2) = 2

68

1 1=> (append ’(a) ’(b))

;Value 13: (a b)

1]=> (cons ’append ’((a) (b)))
;Value 14: (append (a) (b))

1 1=> (eval (cons ’append ’((a) (b))) *())
;Unbound variable: b

1 1=> (cons ’append ’(’(a) ’(b)))
;Value 15: (append (quote (a)) (quote (b)))

1 1=> (eval
(cons ’append ’(’(a) ’(©))) (D)
;Value 16: (a b)

Too complicated!!

65

Higher-order Procedures: reduce

Given union, which takes two lists representing
sets and returns their union:

1 1=> (apply union ’((1 3)(2 3 4)))
;Value 21: (1 2 3 4)

1 1=> (apply union ’((1 3)(2 3)(4 5)))
;The procedure #[compound-procedure union]
;has been called with 3 arguments;

;it requires exactly 2 arguments.

1 1=> (reduce union ’((1 3)(2 3)(4 5)) ()
;Value 22: (1 2 3 4 5)

Question: How would you have to change
reduce to be able to take intersection as its
function argument?

69

