Syntactic Forms

if, begin, or, and are useful syntactic forms.

They have lazy evaluation, i.e., their subexpressions are
not evaluated until required.

Let's look at lazy evaluation and how to exploit it.

(if (=n 0)
(display "oops")
(/ 1 n))

if is evaluated left to right. The "else part” is only
evaluated as necessary, so (/ 1 n) is only evaluated if
the conditional expression is false.

Imagine if if were implemented as a procedure. We'd
be in trouble!

(begin
(display "this is line 1 of the message")
(display "this is line 2 of the message")
#f

begin evaluates it subexpressions from left to right and
returns the value of the last subexpression.

107

Clever Exploitation of Syntactic
Forms and Lazy Evaluation

(define (validate-bindings expr bindings)
(cond ((...) ...)
C...) ..
((symbol? expr)
(debug-display "Symbol:" expr)
(or (get-binding expr bindings)
(builtin? expr)
(begin
(display-error ’unbound expr)
#f

etc.

109

Syntactic Forms (cont.)

(or) => #£

(or (=01) (=02) (=00)) =>#t

(or #£f) => #f

(or #f #t) => #t

(or #f ’a #f) => a (treated as #t in a conditional)

or evaluates its subexpressions from left to right until
either (a) one expression is true, or (b) no more expres-
sions are left. In case (a), the value is true, in (b) the
value is false.

Important subtlety: Every Scheme object is considered
to be either true or false by conditional experssions and
by the procedure not. Only #f (i.e., ()) is considered
false; all other objects are considered true.

(and) => #t

(and (= 00) (=0 1) (=0 2)) => #f

(and #f) => #f

(and #t #t) => #t

(and #t #f) => #f

(and ’a ’b ’c) => ¢ (treated as #t in a conditional)

and evaluates its subexpressions from left to right until
(a) one expression is false, or (b) no more expressions
are left. In case (a), the value is false, in (b) the value
is true.

108

When Lazy Evaluation
isn’'t our friend

Problem: Sometimes lazy evaluation works against you.

Challenge with validate-bindings is that it's a predi-
cate function, so it must return #t/() depending upon
whether the expression has valid bindings, but you must
go through the entire list, even after you generate your
first (). How do you do this?

Hint: There is a construct in Scheme that forces evalu-
ation of a series of expressions before performing some
operation on it. (There are many, actually?) Let’s think
of one we've seen in class and use it.

110

e Conditionals (if, cond)

Summary: Functional Pgming e Equality Checking (eq?, =, equal?, eqv?)

e Recursion (practice, practice)

e Pure functional languages:

. e Efficiency Concerns
— Referential transparency

— helper procedures

No assignment
— let, let*, ...

No iteration, only recursion
— accumulators

Implicit storage management (garbage collection)

— Functions are values e Higher-order functions (map, apply, reduce)
e)\-calculus e Passing Procedures, Returning Procedures
e LISP, Common LISP, Scheme e Anonymous Procedures
e Built-In Procedures e Syntactic Forms and Lazy Evaluation

e Lists (cons cells, proper/improper)
e Read-eval-print loop
e Inhibiting + Activating evaluation (quote, eval)

e Procedure definition and lambda expressions

111

