INTRODUCTION

Reading:

e Sebesta, chapters 1 and 2

©Diane Horton 2000;

with revisions by Suzanne Stevenson and Eric
Joanis 2001, Eric Joanis 2002, Sheila McIl-
raith, 2004.

Administrative Details

e You must read the course info sheet.
It will also be posted on the course web

site.
(http: /wW-CS.toronto.edu/"sheila/324/w04)

Required text: Sebesta.
Note additional recommended references.

All coding assignments must run on CDF
in order to receive credit.

Late policy.

Plagiarism.



What is a
Programming Landguage?

A programming language is . ..

“a set of conventions for communicating
an algorithm.” Horowitz

Purposes:
e specify algorithm and data
e communicate to other people

e establish correctness

Course Goals

Studying programming languages will help you

to

e increase your vocabulary of programming

constructs,

read language manuals,

learn new languages quickly,

choose the right language for a task, and

design a new language.

be a better programmer!



Course Themes
Principles of programming languages, includ-
ing:

e formalisms for describing the syntax of a
language

e issues in designing data type systems

e issues in designing procedures

Programming language paradigms, including:

e functional programming
(exemplified by Scheme)

e |0gic programming
(exemplified by Prolog)

Von Neumann Architecture

Most computers have the following basic struc-
ture:

CPU Main memory

Control unit

Arithmetic and
logic unit -

Registers

(Named after John von Neumann, one of its
originators.)

Memory is separate from the CPU, so instruc-
tions and data must be moved between mem-
ory and CPU.



The fetch-execute cycle

initialize the program counter

loop
fetch the instruction pointed to by the ic
increment the ic
decode the instruction
fetch needed data from memory, if any
execute the instruction
store the result

end loop

Executing an instruction is generally much faster
than moving things between memory and CPU.

So the speed of this movement limits the speed
of the computer.

This is the “von Neumann bottleneck”.

Levels of programming language

Machine language
e Operations are very simple things like:

move contents of mem location 08125 to register 7
add contents of mem location 08125 to register 7

shift the contents if register 3 left omne bit
jump to program line 85
skip the next instruction if register 1 is zero

Instructions are encoded as numbers.

No variables; operands are memory addresses

or register numbers.

Programming requires deep understanding
of the machine architecture.

Programs are not portable because
instructions and their encoding are
machine-specific.

Programs are extremely hard to write, de-
bug, and read.



Assembly language High-level language

e Examples: C, Lisp, Java, Fortran, ...
e Have higher level constructs. Example:

e Operations and operands have symbolic names.

e Can use macros as shorthand for common

sequences of code. if (x == 3)
<some instrns>

else
<other instrns>

sub 3 5 ;sub 3 from reg 5
skp 5 ;8kip if reg 5 is O
jmp 10 ;jump to line 10
<some instrns>

<other instrns>

An assembler translates into machine code.

[ ]
O WN -

Still machine dependent.

e Language usually supports type checking
and other checks that help detect bugs.

Almost as hard to write as machine code.

e Programs are much easier to write, debug,
and read.

e Programs are now machine independent.

e Programs may still be
“language-implementation dependent” .

e Before the first Fortran compiler (1957), it
was commonly believed that any compiler
would produce code so terribly inefficient
as to be useless.



Translation
The process of converting a program written

in a high-level language into machine language
is called Translation.

There are two general methods.

Compilation Interpretation
source source
code code
@ @

compiler

Compilation: The whole program is trans-
lated before execution.

Interpretation: Translate and execute, one
statement at a time.

Comparison of the two methods

Compilation:

e Brings the program down to the level of
the machine.

e Can execute translated program many times
because the entire translation is produced.

e Program execution is much faster because
the translator can do optimization.

e Harder to provide useful feedback when de-
bugging because executing the target code.

Interpretation:

e Brings the machine up to the level of the
program.

e Must re-translate for every execution.

e Program execution is much slower.

e Easier to provide useful feedback when de-
bugging because executing the source code.

e Flexibility supports rapid prototyping.

12



Pseudo-compilation: A hybrid of compilation

and interpretation.

intermed.

e A compiler translates the whole program
before execution, but only into intermedi-
ate code.

e An interpreter translates and executes the
intermediate code one statement at a time.

e The intermediate code can be executed on
any machine that has an interpreter for the
intermediate code.

Java uses this hybrid strategy. Its intermediate
code is called bytecode.
13

Language Paradigms

Imperative languages

e Program statements are commanads.
Example: “Add 17 to x.”

e Key operations: Assignment, looping.
e Fits the von Neumann architecture closely.
e Examples: Fortran, C, Pascal, Turing.

Functional languages

e Program statements describe the value of
expressions, using (essentially) noun phrases.
Example:

“The reverse of a list is last element fol-
lowed by the reverse of the rest of the list
(or is empty if the list is empty).”

e Key operation: Expression evaluation, by
applying a function.

e Examples: Lisp, Scheme, ML

14



Logic-based languages

e Program statements describe facts and rules.
Example:
“Fact: Doug is Tom's father.
Rule: If x is y's father and y is z’'s father,
then x is z's grandfather.”

e Programs don’t say how to find a solution.
e Key operation: “Unification” (the how).

e Example: Prolog.

Object-oriented languages

e Program describes communication between
objects.
Example: “Fraction fl1, simplify yourself.”

e Key operation: Message passing, inheri-
tance.

e Can be imperative or functional.

e Examples: Simula, C++4, Java, CLOS.

15

What Makes a Good Language

General goals:
e The language should be easy to learn.

e Programs written in it should be easy to
write and to read.

Properties of a language that help meet these
goals:

e Minimum number of concepts.

e “Orthogonality”: concepts combine sys-
tematically, with no exceptions.

Simple syntax.

No synonyms.

Meaning of a construct doesn’t depend on
context.

16



Naturalness for the intended applications.
Has the control structures, data structures,
and operations, that are needed, and the
syntax doesn’'t get in the way.

Language not too concise
(or programs will be too terse).

Language concise enough
(or programs will be too long).

Has compile-time or run-time checking.

Support for abstraction and information-
hiding.

Can be implemented efficiently.

Portability.

17



