Final Review

CSC324 Winter 2004

Introduction

What is a PL?

fetch-execute cycle

Von Neumann bottleneck
Compilation vs. Interpretation
Language Paradigms

What makes a good PL?



e EBNF

Formal Languagdge Specification
e Parse Trees and Derivations

e Syntactic Ambiguity (grammar, sentence wrt gram-

Specification vs. Implementation mar)

Specification e Dealing w/ Ambiguity

— Syntax (formal) — change language (e.g., delimiters)

— Semantics (informal) — change grammear (e.g., associativity, precedence)

Properties of Good Syntax .
P y e Implementation

Lexical Rules
e Parsing Techniques

Syntactic Structure . .
e Other Applications
Grammars
Chomsky Hierarchy
Regular Languages - Regular Expressions
Context-Free Grammars (CFGs)

Limitations of each

BNF



Functional Programming

e Pure functional languages:
— Referential transparency
— No assignment
— No iteration, only recursion
— Implicit storage management (garbage collection)

— Functions are values
e )\-calculus
e LISP, Common LISP, Scheme
e Built-In Procedures
e Lists (cons cells, proper/improper)
e Read-eval-print loop
e Inhibiting 4+ Activating evaluation (quote, eval)

e Procedure definition and lambda expressions

4

Conditionals (if, cond)
Equality Checking (eq?, =, equal?, eqv?)
Recursion (practice, practice)

Efficiency Concerns
— helper procedures
— let, let*, ...

— accumulators

Higher-order functions (map, apply, reduce)
Passing Procedures, Returning Procedures
Anonymous Procedures

Syntactic Forms and Lazy Evaluation



] e Dynamic scope
Procedural Language De5|gn Issues
e Implementing scope with stack frames

e Components of a procedure e Displays
— name
— parameters
— body

— optional result

e Parameter passing
— pass by value
— pass by result
— pass by value-result
— pass by reference

— pass by name
e Aliasing through parameter passing
e Procedure Activations
e Stack frames

e Lexical scope



Prolog

Logic Programming
Prolog vs. Scheme (relational vs. functional)

Logic Programming vs. Prolog (nondeterministic vs.
deterministic, e tc.)

Prolog Syntax (Horn Clauses (w/ variables), Facts, trans-
lating from english to Prolog)

Writing Recursive Predicates (e.g., family relations)
Lists (internal representation (dot predicate), head/tail)

Recursive Predicates for List Manipulation (including
accumulators)

Other Structures (functions, e.g., resistor, parse tre, dou-
ble exa mples)

How Prolog Works

— Unification

— Goal-Directed Reasoning

— Rule Ordering
— Backtracking DFS

Improving Efficiency
— Anonymous Variables
— Accumulators

— CUT

Negation as Failure (NAF) (safety conditions, etc.)
Arithmetics

Cut (D

univ, call, functor, arg, assert, retract

Nondeterministic Programs



