Tutorial 8

Week of November 7

1 Efficiency and let in ML

fun hundredth(x:real) =
let
val four = x * X * X * X;
val twenty = four * four * four * four * four;
in
twenty * twenty * twenty * twenty * twenty
end;

fun hundredth(x:real) =
let
val four = x * x * X * X
and twenty = four * four * four * four * four;
in
twenty * twenty * twenty * twenty * twenty
end;

fun median x =

let fun medhelp ((x1::x2::xt),(yl::yt)) = medhelp(xt,yt)
| medhelp (_,(median::_)) = median

(x traverse twice as fast through one list *)
in
medhelp(x,x)
end;

median [1,2,3];
median [1,2,3,4];
median [];

A bad idea:
fun sumcube n =
let fun cube x = x * x * x
in if n = 0 then 0 else cube n + sumcube (n-1)

end;

cube is redefined at every level of recursion :-(

Better idea:

fun sumcube n =
let fun cube x
fun sumc 0
| sumc m
in sumc n
end;

X * X * X;
0
cube m + sumc

(m-1)

2 Mutual Recursive Types

Want to represent a tree with arbitrary #of branches.
‘See the diagram first ...
Defining mutually recursive datatypes (using and).

1 -datatype tree = Empty| Node of int*forest

2 and forest= Nil | Cons of treexforest
datatype tree = Empty | Node of int * forest
datatype forest = Cons of tree * forest | Nil

3 -val t1=Node(2,Nil);
??
4 -val t2=Node(3,Nil);
7
5 -val t3=Node(7,Cons(t1l,Cons(t2,Nil)));
??
6 -val t4=Node(5,Nil);
7
7 -val t5=Node(1,Nil);
7

8 -val t6=Node(2,Cons(t5,Cons(t4,Cons(t3,Nil))));
?7?

We want to count how many nodes are in a tree.
solution: 1+ #of nodes in its subtrees (i.e. forest)

—-fun numnodeT (Empty)=0
| numnodeT (Node(data,f))= 1+ numnodeF(f)
and
numnodeF (Nil) = 0
|numnodeF (Cons(t,f))= 777

a s W -

fn : tree -> int
fn : forest -> int

val numnodeT
val numnodeF

(* Note that numnodeT and numnodeF are
mutually recursive.x*)

6 -numnodeT(t6)
°?

3 Exceptions

(* two exceptions *)
exception Zero of int;
exception Negative of int;

(* posHarmonic = fn : int -> real
* return Harmonic of n
* Pre: n>=1, n is an integer
*)
fun posHarmonic 1
| posHarmonic n

1.0
1.0/real(n) + posHarmonic(n-1);

(* harmonic = fn : int -> real
¥ return Harmonic of n, for n >= 1
* raise an exception Zero, for n=0
* raise an exception Negative, for ow
*)
fun harmonic n = if n >= 1 then posHarmonic n
else if n = 0 then raise Zero n
else raise Negative n;

- harmonic ~1;
uncaught exception Negative raised at:

- harmonic 0;
uncaught exception Zero raised at:

- harmonic 10;
val it = 2.92896825397 : real

(* harmonicList = fn : int list -> real list
* Param: list L of integers
* Return:
* a list of harmonic(element) for each element in L
* handle all exceptions by inserting 0.0 in place of the
* number which caused an Zero exception, and 1.0 in place
* of the number which caused a Negative exception and printing
* an appropriate message.
*)
fun harmonicList [1 = []
| harmonicList (m::rest) =
harmonic(n): :harmonicList (rest)
handle Zero(X) => (print (Int.toString(X)~" is zero\n");
0.0::harmonicList(rest))
I Negative(X) =>(print (Int.toString(X)~" is negative\n");
~1.0::harmonicList(rest));

- harmonicList [1,72,2];
"2 is negative
val it = [1.0,71.0,1.5] : real list

- harmonicList [1,2,0];
0 is zero
val it = [1.0,1.5,0.0] : real 1list

- harmonicList [*5, 0, 5]1;

"5 is negative

0 is zero

val it = [71.0,0.0,2.28333333333] : real list

- harmonicList [1,2,10];
val it = [1.0,1.5,2.92896825397] : real list

