Tutorial 4

Week of October 10, 2005

More practice with recursive procedures

. Develop a procedure that takes a list of numbers and computes the
sum of all even numbers in the list.

1]=> (sum-list-even (1 2 3 4 5 6))
;Value: 12

1 1=> (sum-list-even ’())
;Value: O

1]=> (sum-list-even ’(5 5 5))
;Value: O

A solution

(define (even? n)
(= 0 (modulo n 2))
)

;; Note: there is a built-in procedure even?
;; We can use cond or if (cond recommended) .

(define (sum-list-even 1)
(cond ((null? 1) 0)
((even? (car 1)) (+ (car 1) (sum-list-even (cdr 1))))
(else (sum-list-even (cdr 1)))

)
)

(define (sum-list-eveni 1)
(if (null? 1)
0
(if (even? (car 1)) (+ (car 1) (sum-list-evenl (cdr 1)))
(sum-list-evenl (cdr 1)))

2. Define a procedure which adds all the numbers in a nested list, on all
levels. Assume there are only numbers in the list.

Distinguish between 2 classes of problems i) where you have a list that
you are treating as a flat list and processing as such. This often uses
cdr-recursion. ii) the input list is a nested list and you actually have
to apply the procedure recursively to each nested, nested, nested... list
within the input list. For this you use car-cdr recursion. This problem
is an example of car-cdr recursion.

1 1=> (sum-all-levels ’(1 2 3))
;Value: 6

1 1=> (sum-all-levels (1 (2 3)))
;Value: 6

1 1=> (sum-all-levels () (1) (2 (3))))

;The object (), passed as the first argument to integer-add, is not the corre
type.

;To continue, call RESTART with an option number:

; (RESTART 2) => Specify an argument to use in its place.

; (RESTART 1) => Return to read-eval-print level 1.

2 error> (restart 1)

;Abort!

1 J=> (sum-all-levels ’((1) (2 (3))))
;Value: 6

A solution:
;5 This is a helper procedure discussed in lecture

b

(define (atom? x)
(not (pair? x))

b

20

(define (sum-all-levels 1)
(cond ((null? 1) 0)
((atom? (car 1)) (+ (car 1) (sum-all-levels (cdr 1))))
(else (+ (sum-all-levels (car 1))
(sum-all-levels (cdr 1))))

Higher Order Procedures

. MAP

(map <procN>

where <proclN>

<listi1>
<list2>

<listN>

is

is
is

is

<listi1> ...

<1listN>),

an N-ary procedure
(a procedure that takes N arguments)

(e1l1 el12 ...
(e21 e22 ...

(eN1 eN2 ...

return the following list:

(r1 r2 ...

where rl1 = (<procN> ell e21 ...
r2 = (<proch> el2 e22 ...

rM = (<procN> elM e2M ...

For example,

™),

elM), a list of M elements
e2M), a list of M elements

eNM), a list of M elements

eN1)
eN2)

elM)

11=> (map null? (1 () 2 (3 4) () 5))
;Value 1: (O # O O #t Q)

11=> (map - ’(1 234) (1 111))
;Value 2: (0 1 2 3)

1]=> (map cons (1 2 3 4) >((2 3) (23) (23) (23)))
;Value 4: ((1 2 3) (223) (323) (423))

2. APPLY

(apply <procN> <list>),
where <procN> is an N-ary procedure
(a procedure that takes N arguments)
and <list> is (argl arg2 ... argN), a list of N elements

return the result of evaluating:

(<procN> argl arg2 ... argh)
For example,

1 1=> (apply null? (C O))
;Value: #t

1 1=> (apply - ’(10 5))
;Value: 5

1 1=> (apply cons ’(a (b c d)))
;Value 5: (a b ¢ d)

11=> (apply + (11 11111))
;Value: 7

1 1=> (apply append ’((1) (2) (3 4) (56) O))
;Value 6: (1 2 3 4 5)

Using HOPs

. Write a procedure norm that takes a list, which represents a vector, and
computes its Eucledean norm. You must use recursion in your solution.
You can use built-in sqrt, but not built-in square.

Ezxample:

1 1=> (norm ())
;Value: O

1 1=> (norm ’(1))
;Value: 1

1 1=> (norm ’(3 4))
;Value: 5

1]=> (norm (1 2 3 -4 -5 -6))
;Value: 9.539392014169456

The solution:

;; (square x) returns the square of x

Args: x - a number, the square if which is returned
;3 Pre: x is a number

;; Post: nomne

;; Return: the square of x

(define (square x)

(* x x))

;; (sum-of-squares 1st) returns the sum of the squares
;3 of the numbers in the list 1st
;; Args: 1st - a list of numbers
;; Pre: 1st is a list (flat) of numbers
;; Post: nome
;; Return: the sum of the squares of the numbers in 1st
(define (sum-of-squares 1st)
(if (null? 1st)
0
(+ (square (car 1st)) (sum-of-squares (cdr 1st)))))

(norm 1st) returns a Euclidean norm of a vector,

;; represented by a list 1st

;; Args: 1st - a list representation of a vector

;; Pre: 1st is a flat list of numbers

;; Post: nome

;; Return: a Euclidean norm of a vector, represented by lst
(define (norm 1lst)

(sqrt (sum-of-squares 1lst)))

2

2. Redo the question, only this time you may not use recursion.

;5 (square x) returns the square of x

;; Args: x - a number, the square if which is returned
;3 Pre: x is a number

;; Post: none

;; Return: the square of x

(define (square x)

(* x x))

;; (norm 1lst) returns a Euclidean norm of a vector,
; represented by a list 1lst

;; Args: 1st - a list representation of a vector
;; Pre: 1st is a flat list of numbers
;; Post: nome

;; Return: a Euclidean norm of a vector, represented by lst

(define (norm 1lst)
(sqrt (apply + (map square 1lst))))

3. Redo the question, only this time you may not use recursion and you

may not use any helper procedures

(norm 1st) returns a Euclidean norm of a vector,

;; represented by a list 1st

;; Args: 1st - a list representation of a vector

;3 Pre: 1st is a flat list of numbers

;; Post: nomne

;; Return: a Euclidean norm of a vector, represented by lst

(define (norm 1st)
(sqrt (apply + (map (lambda (x) (* x x)) 1st))))

2

4 More HOPs

We represent a matrix as a list of lists. For example, the matrix

is represented by ((1234)(5678)(9012))

© o=
S O N
=g W
N OO &~

1. Write a procedure add to perform matrix addition for matrices repre-
sented as above.

;; (add matrixA matrixB) returns the sum of matrixA and matrixB
;5 Args: matrixA, matrixB - matrices to be added

;; Pre: matrixA, matrixB - repesented as described above,

s and have the same number of rows and columns
;; Post: none

;; Return: the sum of matrixA and matrixB

(define (add matrixA matrixB)

(map (lambda (rowA rowB) (map + rowA rowB)) matrixA matrixB))

2. Write a procedure columni to extract the first column of a matrix.

;3 (columnl matrix) returns the first column of matrix
;5 Args: matrix - a matrix
;5 Pre: matrix - repesented as described above and is non-empty
;; Post: none
;; Return: the first column of matrix represented as a list
(define (columnl matrix)

(map car matrix))

3. Write a procedure columnN to extract the Nth column of a matrix.
(Start counting from 1)

;; (columnN matrix N) returns the Nth column of matrix
;5 Args: matrix - a matrix, N - a positive number
;; Pre: matrix - repesented as described above and has
s at least N columns
;; Post: none
;; Return: the Nth column of matrix represented as a list
(define (columnN matrix N)
(if (=N 1)
(map car matrix)
(columnN (map cdr matrix) (- N 1))))

4. Write a procedure sum-Nth-col to sum the Nth column of a matrix.
(Start counting from 1)

;; (sum-Nth-col matrix N)
;3 return the sum of the nth column of matrix
;; Pre: matrix has an nth column
(define (sum-Nth-col matrix N)
(if (=N 1)
(apply + (map car matrix))
(sum-Nth-col (map cdr matrix) (- N 1))))

. Write a procedure mult to perform multiplication of a matrix by a
scalar.

;; (mult ¢ matrix c) returns the multiplication
;5 of matrix by c
;5 Args: matrix - matrix to be multiplied
5 c - scalar
;; Pre: matrix - repesented as described above
- ¢ - scalar
;; Post: none
;5 Return: the multiplication of matrix by c
(define (mult ¢ matrix)

(map (lambda (row)

(map (lambda (x) (* c x))
row))
matrix))

10

