Tutorial 3

Week of October 3, 2005



1 Good Programming Style

Please read the following document. Pay particular attention to
the issue of programming-by-contract and what is expected in
your code:

http://www.cs.toronto.edu/ "sheila/324/£f05/assns/marking.html

Please ensure that you:

- proper indentation

- meaningful procedure and argument names

- document your code w/ pre- and post-conditions



2 Conditional Control structures

(if <condition>
<then-expression>
<else-expression>)

Example:
11=> (1if & 3 2)
’foo
’bar)

;Value: foo

1 1=> (if (= 3 2)
’foo
’bar)

;Value: bar

1 1=> (if (> 3 2)
’£00)
;Value: foo

1 1=> ((f (=3 2)
’foo)
;Unspecified return value  <---- generally, a bad thing to have

1 1=> (if > 3 2)

’foo

bar) <---- bar is not evaluated
;Value: foo called ‘‘Lazy evaluation’’

1 J=> (if (= 3 2)
’foo
bar)
;Unbound variable: bar <-—--- bar is evaluated => ERROR



(cond ( <conditionl> <expressionl> )
( <condition2> <expression2> )

( <conditionN-1> <expressionN-1> )
( else <expressionN> ))

1 ]=> (cond ( (< 2 2) ’foo )
( (>22) ’bar ))
;Unspecified return value <--- generally, not a good thing

1 1=> (cond ( (< 22) ’foo )

( (> 22) ’bar )

( (= 2 2) ’foobar)) <--- not a good thing
;Value: foobar unnecessary evaluation

1 1=> (cond ( (< 2 2) ’foo )

( (> 2 2) ’bar )

(else ’foobar)) <--- much better now
;Value: foobar

1 1=> (cond ( (> 3 2) ’foo )
( (<32) bar ) <---- bar is NOT evaluated
( else >foobar)) Lazy evaluation again
;Value: foo

1 1=> (cond ( (< 3 2) foo ) <--- foo is NOT evaluated
( > 32) ’bar )
(else ’foobar))

;Value: bar

1 1=> (cond ( (< 3 2) foo ) <——- foo is NOT evaluated

( (= 32) bar ) <--- bar is NOT evaluated

(else foobar)) <--- foobar is evaluated => ERROR
;Unbound variable: foobar...



3

Lists

(cons <argl> <arg2>) ,

where <argl> and <arg2> are arbitrary, but both are necessary

(list <argl> <arg2> ... <argh>) ,

where <argl> <arg2> ... <argN> are arbitrary, neither is necessary
(append <argl> <arg2> ... <argh>)

where <argl> <arg2> ... <argN-1> are lists and <argN> is

arbitrary, neither is necessary

Draw pictures of:

1.

() can come from (list)

Picture: ()

. (1) can come from (list 1)

(1.2)
Note the spaces around the
can come from (cons 1 2)

w»

- (1.0)

It is the same as (1) I!!
can come from (cons 1 () )

( () ) can come from (list () ) or from (cons () ())

((12)3()((4)5)6) could come from:
( list (1 2) 3 0O (list (list 4) 5) 6)

| |
could be (list 1 2) could be ’( (4) 5)

((12)30((4).5)6)

could come from ( list (list 1 2) 3 () (cons ’(4) 5) 6)



— 0

1
| — 2
1
| — 0
0

Figure 1: (1)

Figure 2: (1. 2)

Figure 3: ( () )



— 0

4

Figure 4: ((12)3 () ( (4) .

5) 6)

0
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Recursive procedures

Marks will be deducted in A2 if you don’t include Pre, Post, Args, etc., or if
the latter are unclear or underspecified.

1.

Write a procedure sum-list-large that takes a list of numbers and
computes the sum of all numbers greater than 2 in the list. Return 0
if there are no such numbers in the input list.

;; (sum-list-large 1st) return the sum of all numbers that are

;5 greater than 2 in 1st

;; Args: 1st - a list of numbers

;; Pre: 1st is flat list of numbers; 1lst can be empty

;; Post: none

;;Return: if 1st contains numbers greater than 2, their sum

M ow, O

(define (sum-list-large 1lst)

(cond ((null? 1st) 0)

((> (car 1st) 2) (+ (car 1lst) (sum-list-large (cdr 1lst))))
(else (sum-list-large (cdr 1st)))))

. Write a procedure that takes a non-negative integer n and an object as

input and returns a list of n objects.

E.g., (make-list 7 ’()) returns (O O O O O O O)
(make-list 3 ’csc324) returns ( csc324 csc324 csc324 )

;; (make-list n object) returns a list of n objects
;; Args: n - the number of times object appears in the result list
HH object - each element of the resulting list
;; Pre: n - non-negative integer
;; Post: none
;; Return: a list of n objects
(define (make-list n object)
(if (=n 0)
0
(cons object (make-list (- n 1) object)))))



5 More Examples

1. Write a procedure member? that takes an object and a flat list as
inputs and tests whether the object is an element of the input list.

;; (member? elt 1lst) tests whether elt appears in lst
;5 Args: elt - element to be tested for membership
HH 1st - the list to be tested for containing elt
;3 Pre: 1lst - a flat list
- equal? is appropriate to test for equality of elt with
S elements of 1lst
;; Post: none
;; Return: true, if elt appears in 1lst
M false, otherwise
(define (member? elt 1lst)
(cond ( (null? 1st) () )
( (equal? elt (car 1lst)) #t)
( else (member? elt (cdr 1st)))))

2. Write a procedure intersect that computes the intersection of two lists.
In other words, given two lists as arguments, it returns a list of elements
contained in both lists.

Example:
1=> (intersect ’(1 2 3 4) ’(10 2 4 100) )
;Value: (2 4)

1=> (intersect ’(john david) ’(david 2 sky 4) )
;Value: (david)



; (intersect 1stl 1st2) returns a list of elements contained
;3 in both 1lstl and 1st2
;; Parameters: 1lstl and 1lst2 are lists
;; Preconditions: none
;; Postconditions: none
;3 Return values: a list of elements contained both in 1stl and 1st2
(define (intersect 1lstl 1st2)
(cond ((null? 1st1) ())
((member? (car 1lstl) 1st2)
(cons (car 1stl) (intersect (cdr 1lstl) 1st2)))
(else (intersect (cdr 1stl) 1st2))))

. Write a procedure union that computes the union of two lists. In
other words, given two lists as arguments, it returns a list of elements
contained in either of the two lists, but does not create duplicates.

Example:
1=> (union (1 2 3 4) >(10 2 4 100) )
;Value: (1 2 3 4 10 100)

]=> (union ’(john david) ’(david 2 sky 4) )

;Value: (john david 2 sky 4)

; (union 1stl 1st2) returns a list of elements contained

in either 1stl or 1st2, but does not create duplicates

;; Parameters: 1lstl and 1lst2 are lists

;3 Preconditions: none

;; Postconditions: none

;3 Return values: a list of elements contained both in 1stl and 1lst2

(define (union 1lstil 1st2)

(cond ((null? 1st1l) 1st2)

((member? (car 1lstl) 1st2) (union (cdr 1lstl) 1st2)))
(else (cons (car 1stl) (union (cdr 1stl) 1st2))))



6 Proofs

Recall the procedure factorial.

;; (factorial n) returns n!
;5 Args: n - a number, factorial of which is returned
;; Pre: n is an integer, n >=0
;; Post: none
;3 Return: n!
(define (factorial n)
(if (= n 0)
1
(* n (factorial (- n 1)))))

We want to prove that (factorial n) = n! ¥n € N, n > 0. Define P(n) to
stand for (factorial n) = n!. We prove by induction on n:

1. Base case:

(factorial 0) [definition of (factorial n)]
== (if (= 0 0)
1
(x 0 (factorial (- 0 1)))) [evaluation of (= 0 0)]
== (if #t
1
(* 0 (factorial (- 0 1)))) [evaluation of if structure]
=1 [definition of factoriall
== 0!

We thus conclude that P(0) is true.

2. Inductive step:

Assume P(7) for an arbitrary ¢ € N, ¢ > 0. In other words, we assume
that (factorial i) = i! for an arbitrary ¢ € N, ¢ > 0. This is our
inductive hypothesis (IH).

(factorial (i+1)) [definition of (factorial n)]
== (if (= (i+1) 0)
1
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(* (i+1) (factorial (- (i+1) 1)))) [arithmetic]

= (if (=i -1)
1
(x (i+1) (factorial 1i))) [evaluation of (= i -1)
according to IH i>=0]
== (if #f
1
(* (i+1) (factorial i))) [evaluation of if structure]
== (% (i+1) (factorial i)) [IH]
== (x (i+1) i!) [definition of factoriall
== (i+1)!

We thus conclude that P(i) = p(i + 1) for any i > 0, i € N.

Thus, by the Principle of (weak) Induction, we conclude that P(n) is true
for all n € N, n > 0. In other words, (factorial n) =n!Vn € N, n > 0.
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