Tutorial 2

Week of September 26, 2005

1 Scheme on CDF

Invoking: scheme

Exiting: (exit) or Ctrl-D

Loading filename.scm: (load ‘‘filename’’)
or

(load ‘‘filename.scm’’)
Tracing: (trace proc_name)
Transcript:

(transcript-on <my_transcript>)
(transcript-off)

will save a transcript of a session to <my_transcript>.

Debugger:
-start: (debug)
-help: ?
-go back (read-eval-print level): (restart 1) or Ctrl-C Ctrl-C
-quit: q

2 Read-Eval-Print loop

1. Read input from user
2. Evaluate input

3. Print return value
HOW DOES EVALUATION GO? Let’s see...

1 1=>1
;Value: 1

this means: ‘‘1’’ evaluates to 1

11=>+
;Value 1: #[arity-dispatched-procedure 1]

This means ‘‘+’’ evaluates to some addition procedure. STRESS THIS.

Attention!!! I see an opening bracket!!!

Can I find a matching closing bracket? Yes. OK. Moving along.
(If T don’t find a matching closing bracket, I’1l just complain

and do nothing)

Here’s what I do next:

- I look at the first thing after an opening bracket and I

evaluate it. I NEED it to evaluate to a procedure. If it does
not, I complain and do nothing.

Here I am looking at the string ‘‘+’’. I can evaluate it to a
procedure which does the addition (as above). OK. Moving along.

Now I look at the rest of the things before the closing bracket
and evaluate them. If I cannot evaluate something along the way,
I complain and do nothing. Otherwise, move along.

Well, in our case ‘‘1’’ evaluates to 1 and ‘‘2’’ evaluates to 2.
So far, so good.

Now I attempt to apply the addition procedure (which I got from
evaluating ‘‘+’’) to 1 and 2, which I got from evaluating ‘‘1°’
and ‘‘2’’. It happens so that the addition procedure is defined
in such a way that it successfully does the job of adding 1 and
2 and it says that 3 is the answer. I am done. I have evaluated
the expression ‘‘(+ 1 2)’’ to 3. So I say so.

;Value: 3

3 Defining Procedures

Not all procedures are already defined (like addition in the previous example).
Here’s how we define procedures.

(lambda (varl var2 ... varN) expl exp2 ... expM)

‘‘lambda’’ is the keyword here: when I see ‘‘lambda’’, I know this is
procedure definition.

varl, var2, ..., varN are the arguments to the procedure.
The rest is the body of the procedure.
A1l of expl, exp2, ..., expM are evaluated; value of expM only is returned.

1]=> (lambda (x) x)
;Value 1: #[compound-procedure 1]

“¢“(lambda (x) x)’’ got evaluated to a procedure that takes something
as a argument and returns it.

1]=> (lambda (x) (+ x x))
;Value 1: #[compound-procedure 2]

>¢(lambda (x) (+ x x))’’ got evaluated to a procedure that takes
something as an argument and returns the result of evaluating
““(+ something something)’’.

1 1=>((lambda (x) (+ x x)) 5)
;Value: 10

““((lambda (x) (+ x x)) 5)’’ is evaluated as follows:

see an opening bracket

evaluate the first thing after it:
‘“(lambda (x) (+ x x))’’ evaluates to a procedure as above

- ‘‘5’? evaluates to 5

- the procedure is applied to 5:

- evaluate ‘‘(+ 5 5)7’
- evaluate ‘‘+’’ to an addition procedure

- evaluate 5 to b

- get 10
- return the result of evaluating ‘‘(+ 5 5)’’, i.e. return 10
- print the result: ‘‘;Value: 107’

BUT NOTE:

11=> ((lambda (x y) (* x y) (+ xy)) 3 5)
; Value: 8

4 Giving a name to a procedure

(define proc-name (lambda (varl var2 ... varN) expl exp2 ... expM))

‘‘define’’ is the keyword here: when I see ‘‘define’’, I know I will
have 2 things following it, before the closing bracket.

Then the following happens:
- the second thing is evaluated
- the first thing gets the value obtained from evaluation

1 1=> (define my_proc (lambda (x) (+ x x)))
;Value: my_proc

This means:
- ‘“(lambda (x) (+ x x))’’ got evaluated to a procedure as before
- my_proc now has a value: it is that procedure

1 1=> (my_proc 5)
;Value: 10

this means: - ‘‘my_proc’’ got evaluated to a procedure above
apply that procedure to 5
get 10 and print it

IMPORTANT NOTE:
This is no different from:

1 1=> (define x 10)

;Value: x
1]=>x
;Value: 10

We evaluate ‘‘10’’ to 10 and assign it to x. In case of procedure
definition the second thing just happens to evaluate to a procedure.

Shortcut:
(define (proc-name varl ... varN) expl ... expM)

It is THE SAME AS
(define proc-name (lambda (varl var2 ... varN) expl exp2 ... expM))

1 1=> (define (my_proc x) (+ x x))
;Value: my_proc

1 1=> (my_proc 5)
;Value: 10

Comments:
Use ;

5 Example

In the file called “myfile.scm” you have the following:

; my comments are here
(define (increment n)
(+ n 1))

; some other comments are here
(define foobar 21)

werewolf:~\} scheme
Scheme Microcode Version 14.9
MIT Scheme running under GNU/Linux
Type ‘"C’ (control-C) followed by ‘H’ to obtain information about interrupts.
Scheme saved on Monday June 17, 2002 at 10:03:44 PM
Release 7.7.1
Microcode 14.9
Runtime 15.1

1 1=> (load "myfile")

;Loading "myfile.scm" -- done
;Value: foobar

1 1=> (increment foobar)
;Value: 22
OK. What happened there?
1) Loading:
same as typing in the stuff in the interpreter:

we have defined the procedure ‘‘increment’’ and
we have defined foobar to be 21

2) Evaluating ‘‘(increment foobar)’’:

lookup procedure value corresponding to ‘‘increment’’:
(lambda (n) (+ n 1))

lookup ‘‘foobar’’: 21

evaluate ‘‘((lambda (n) (+ n 1)) 21)’’:

- evaluate (+ 21 1)
- evaluate ‘‘+’’ to an addition procedure
- evaluate 21 to 21 and 1 to 1

- apply addition procedure to 21 and 1, get 22
- print 22
And Scheme interpreter sort of tells you this:

1 1=> (trace increment)
;Unspecified return value <---- just means ‘‘nothing is returned’’
it is not an error, we can procede

1]=> (increment foobar)

[Entering #[compound-procedure 1 increment]

Args: 21]
[22
<== #[compound-procedure 1 increment]
Args: 21]
;Value: 22

Well, you have to learn its language...

6 Quoting

(quote <expression>) is same as ’<expression>
’}<expression> evaluates to <expression>

Some examples:

1]1=> (define x 1)

;Value: x
1]=> 'x
;Value: x
1]=>x
;Value: 1
1 1=> 1
;Value: 1
1]1=>1
;Value: 1

More interesting:
(define x ’y)

(define y 5)

(define z y)

+y 1 evals to 6
+ z 1) evals to 6

(+x 1) evals to Error

EXPLAIN WHAT HAPPENS HERE IN DETAIL

10

