Advice for Writing Prolog

To minimize bugs, especially with cut and nega-
tion:

e Use cut or negation as necessary to avoid

wrong answer

e Always use ;" when testing to check all
possible answer

e Use cut to avoid duplicate answers.

e Use cut where possible for efficiency.

e Use where possible for efficiency.

e Follow the safety guidelines for negation.

e Test with variables in every combination of
positions.

e Use a precondition to state where variables
are disallowed.

univ

The standard built-in predicate called 'univ’
(=..) translates a predicate and its arguments
into a list whose first element is the predicate
name and whose remaining elements are the
arguments. It works in reverse as well.

For example,

?- pred(argl,arg2) =.. X.
X = [pred, argl, arg2]

?- pred =.. X.
X = [pred]
?- X =.. [pred,argl,argi].

X = pred(argl, arg2)

?- X =.. [pred].
X = pred

Prolog Review

Logic Programming

Prolog vs. Scheme (relational vs. functional)

Logic Programming vs. Prolog (nondeterministic vs.
deterministic, e tc.)

Prolog Syntax (Horn Clauses (w/ variables), Facts, trans-
lating from english to Prolog)

Writing Recursive Predicates (e.g., family relations)

Lists (internal representation (dot predicate), head/tail)

Recursive Predicates for List Manipulation (including
accumulators)

Other Structures (functions, e.g., resistor, parse tree, tree,
etc.)

How Prolog Works
— Unification
— Goal-Directed Reasoning
— Rule Ordering
— Backtracking DFS
122

Example using univ

Define polygons figures as follows:
square(Side)
triangle(Sidel,Side2,Side3)
circle(R)

We'd like to define a predicate that enlarges each of
these figures.
enlarge(Fig,Factor,Figl).

Here’s one way:
enlarge (square(A) ,F,square(A1) :-
Al is F*A.
enlarge(circle(R),F,circle(R1) :-
R1 is F*R1.

Using univ, we can do it much more elegantly:
enlarge(Fig,F,Figl) :-
Fig=..[Type|Parameters],
multiplylist(Parameters,F,Parametersi),
Figl=..[Type|Parametersi].

multiplylist([1,_,[1).

multiplylist ([X|L],F, [X1|L1]) :-
X1 is F*X, multiplylist(L,F,L1).

Improving Efficiency

— Anonymous Variables
— Accumulators

- CUT

Negation as Failure (NAF) (safety conditions, etc.)

Arithmetics

Cut (1)

Beyond the Course:
— univ, call, functor, arg, assert, retract

— Nondeterministic Programs

cal, functor, arg

call allows you to call a predicate. E.g.,
Goal=..[Functor | Arglist].
call(Goal).

Alternatively, you can do this with functor and arg.
functor(Term,F,N)

functor is true if F is the principal functor of Tern and
N is the arity of F.

arg(N,Term,A)

arg is true if A is the Nth argument in Term, assuming
that arguemnts are numbered from left to right starting
with 1.
E.g,
7- functor(t(£(X),X,t) ,Fun,Arity).
Fun=t
Arity=3

7- arg(2,£(X,t(a),t(b)),Y).
Y=t (a)

?- functor(D,examdate,3),
arg(1,D,22),
arg(2,D,april),
arg(3,D,2004) .

D=examdate (22,april,2004)

...Beyond what we're " Officially” Covering, but
interesting nonetheless!

123

assert/retract

Here is an example illustrating how clauses may be added
and deleted from the Prolog data base. The example
shows how to simulate an assignment statement by us-
ing assert and retract to modify the association be-
tween a variable and a value.

:- dynamic x/1 .
x(0). % provide an initial value

assign(X,V) :- 01d =..[X,_], retract(01ld),
New =..[X,V], assert(New).

Here is an example using the assign predicate.
7- x(N).

N=20

Yes

?- assign(x,5).
Yes

7= x(N).

N=5

127

Code with structures

Suppose we represent ordinary binary trees as
follows:

e the atom “empty” represents an empty bi-
nary tree

e the structure node(K,L,R) represents a tree
with integer value K at the root, left sub-
tree L, and right subtree R.

Write these predicates:
e member
e member for a binary search tree
e insert for a binary search tree

e delete for a binary search tree

128

Nondeterministic Programming
(Sterling and Shapiro - the Art of Prolog)

Nondeterminism is powerful for defining and implement-
ing algorithms.

Intuitively, @ nondeterministic machine can choose its
next operation correctly when faced with several alter-
natives.

Nondeterminism can be simulated/approximated by Pro-
log’s sequential search and backtracking. Nondetermin-
ism cannot truly be achieved.

Examples of nondeterministic programs (mostly for NP-
complete problems):

generate-and-test

N-gueens

Map colouring

Al planning

Towers of Hanoi

e etc.

132

Program as Data

In Prolog, a predicate is a structure. Example:

second(hello, X)

There is no structural difference between a
query and data. (But we can execute a struc-
ture that represents a query.)

This allows us to build up a query, or tear one
apart and modify it — and then execute the
result.

Exercise: Write this predicate:

compare(Table, Row, Column, Comparison, Value)

succeeds iff the value of Table in position (Row, Col)
compares to Value according to the given Comparison.
Precondition: Comparison is a predicate of two arguments.

Example:

| 7- compare([[1,2,3],[4,5,6],[7,8,911, 1, 3, <, 27).
yes
| 7- compare([[1,2,31,[4,5,61,[7,8,911, 1, 3, <, 1).
no

129

Towers of Hanoi

Setup: 3 pegs (" left”, "centre”, "right"). In the initial
state one peg (let's say the "left” peg) has N rings on
it, stacked from largest to smallest.

Task: Move N disks from the left peg to the right peg
using the centre peg as an auxiliary holding peg. At no
time can a larger disk be placed upon a smaller disk.

Solution:

move(1,X,Y,) :=
write(’Move top disk from ’),
write(X),
write(’ to ’),
write(Y),
nl.
move(N,X,Y,Z) :-
N>1,
M is N-1,
move(M,X,Z,Y),
move(1,X,Y,.),
move(M,Z,Y,X) .

133

Univ and Call

Two built-in Prolog predicates:

Univ: for building queries

The goal
X=.L

succeeds iff X is a structure whose functor is

the first element of L, and whose arguments
are the remaining elements of L.

Call: for executing queries

The goal
call(X)

succeeds iff X succeeds.

This seems pointles. Why not just write X
instead of call(X)?

130
Towers of Hanoi (cont.)
move(1,X,Y,_) :-
write(’Move top disk from ’),
write(X),
write(’ to ’),
write(Y),
nl.
move(N,X,Y,Z) :-
N>1,
M is N-1,
move(M,X,Z,Y),
move(1,X,Y,),
move(M,Z,Y,X) .
Execution for N=3:
?- move(3,left,right,centre).
Move top disk from left to right
Move top disk from left to centre
Move top disk from right to centre
Move top disk from left to right
Move top disk from centre to left
Move top disk from centre to right
Move top disk from left to right
Yes
134

eaeae

seae

Let's Write More Predicates

allHave(List, Key) succeeds iff List is a List,
and every element of List is itself a list that
contains Key.

allListsHave(List, Key) succeeds iff List is a List,
and every element of List that is itself a list,
contains Key.

Towers of Hanoi (cont.)

move(1,X,Y,) -
write(’Move top disk from),
write(X),
vrite(’ to '),
write(Y),

nl.
move(N,X,Y,Z) :-
w1,
M is N-1,
move(M,X,Z,Y),
move(1,X,Y,.),
move(M,Z,Y,X).

135

