Execution of Prolog Programs

e Unification: (variable bindings)
Specializes general rules to apply to a spe-
cific problem.

CONTROLLING e Backward Chaining/

PROLOG REASONING TOD'DQW" Reasoning{
Goal-Directed Reasoning:

Reduces a goal to one or more subgoals.

e Backtracking:
Systematically searches for all possible so-
lutions that can be obtained via unification
and backchaining.

Bottom-up Inference

Reasoning A rule base:
<- B (¢D)
<- C (2)
(3)

QW=

e Bottom-up (or forward) reasoning: start-
ing from the given facts, apply rules to infer

. . A bottom-u roof:
everything that is true. PP

e.g., Suppose the fact B and therule A+ B infer A
are given. Then infer that A is true. rule (1)
. infer B
e Top-down (or backward) reasoning: start-
ing from the query, apply the rules in re-
verse, attempting only those lines of infer- rule (2)
ence that are relevant to the query. infer C
e.g., Suppose the query is A, and the rule
A« B is given. Then to prove A4, try to rule (3)
prove B. start

So, A is proved



Top-Down Inference
A rule base:
<- B (¢D)
<- C (2)
(3

QW=

A top-down proof:

goal A
rule (1)
goal B
rule (2)
goal C
rule (3)
success

So, A is proved

Execution of Prolog Programs

e Unification: (variable bindings)
Specializes general rules to apply to a spe-
cific problem.

e Backward Chaining/
Top-Down Reasoning/
Goal-Directed Reasoning:
Reduces a goal to one or more subgoals.

e Backtracking:
Systematically searches for all possible so-
lutions that can be obtained via unification
and backchaining.

Top-down vs Bottom-up Inference

e Prolog uses top-down inference, although
some other logic programming systems use
bottom-up inference (e.g., Coral).

e Each has its own advantages and disadvan-
tages:

— Bottom-up may generate many irrele-
vant facts.

— Top-down may explore many lines of
reasoning that fail.

e Top-down and bottom-up inference are log-
ically equivalent.

i.e., they both prove the same set of facts.

Prolog Search Trees

Encapsulate unification, backward chaining, and
backtracking.

e Internal nodes are ordered list of subgoals.

e Leaves are success nodes or failures, where
computation can proceed no further.

e Edges are labeled with variable bindings
that occur by unification.

Describe all possible computation paths.

e There can be many success nodes.

e There can be infinite branches.



Prolog Execution Example
Example 2 Database:
holiday(friday,aprili4).

weather (friday,fair).

weather (saturday,fair).

weather (sunday,fair).

weekend (saturday) .
weekend (sunday) .

picnic(Day) :- weather(Day,fair), weekend(Day).

picnic(Day) :- holiday(Day,aprili4).
Pose the query:

picnic(When).
Three answers are generated:

?- picnic(When).

When = saturday ;
When = sunday ;
When = friday ;
No

Problem with DFS

Can get stuck on infinitely recursive paths, even

when a goal is provable.

E.g.,
married(X,Y) :- married(Y,X).

married(john,sue).

The query:

married(sue, john)?

Solution:

spouse(X,Y) :- married(X,Y).
spouse(X,Y) :- married(Y,X).

Another example:

above(X,Z) :- above(Y,Z), on(X,Y).
above(X,Y) :- on(X,Y).

11

Prolog Search Tree

Prolog uses Depth-First Search (DFS).
10

Controlling Prolog’s Reasoning
with Cut

The goal “'", pronounced “cut” always suc-
ceeds immediately.

It has an important side effect: Once it is sat-
isfied, it disallows either:
e backtracking back over the cut, or

e backtracking and applying a different clause
of the same predicate to satisfy the present
goal.

You can think of satisfying cut as making a
commitment both

e to the variable bindings we’'ve made during
the application of this rule, and

e to this particular rule itself.

12



Describing Cut (1)

The cut goal succeeds whenever it is the current goal,

and the derivation tree is trimmed of all other choices
on the way back to and including the point in the deriva-

tion tree where the cut was introduced into the sequence

of goals.

Cut tells us: " Do not pass back through this point when
looking for alternative solutions. ! acts as a marker
back beyond which Prolog will not go. All the
choices made prior to the cut are set, and are treated
as though they were the only possible choices.

You can think of Cut as telling the interpreter: " Trust
me — if you get this far in the clause, there’s no need to
backtrack and try another choice for groving this goal,or
to try another way of satisfying any of the subgoals that
were already proved for this goal.”

13

1. Cut Can Reduce Your Search
Space

Cut can be used to improve the efficiency of
search by reducing Prolog’s search space. E.g.,

When two predicates are mutually exclusive.

q(X) :- even(X), a(X).
q(X) 1= 0dd(X), b(X).

With cut

q(X) :- even(X), !, a(X).
q(x) 1= odd(X), b(X).

15

How to Trace with Cut

When a “!" goal is satisfied:
1. Find the rule that has that cut.

2. Put an oval around the tree branch

e from the node where the first goal matches
the head of that rule

e down to the node where the first goal
is that cut.

For every node circled, no further branches will
be explored from that node.

14

1. Reducing Search Space (cont.)

a(1) :- b.
a(2) :- e.

b =1, c.
b - d.

c - fail
d.

e.

16



2. Cut Can Implement Exceptions
to Rules

I.e., " To get the right answer".

Cut can be used to encode exceptions to rules.
This is used in Al default reasoning.

bird(eagle) .
bird(sparrow) .
bird(penguin) .
fly(penguin) :- !, fail.
fly(X) :- bird(X).

17

4. Cut Can Remove Multiple
Answers

Fixing our isaMother Example. Recall,

1) isaMother(X) :- female(X),parent(X,_).
2) isaFather(X) :- male(X),parent(X,_).

3) isa(X) :- female(X),parent(X,_), !.
4) top(X) :- isa(X).

5) top2(X):- female(X), isa2(X).
6) isa2(X):- parent(X,_), !.

7) top3(X):- female(X), isa3(X).
8) 1isa3(X):- !, parent(X,_ ).

9) parent(fred,sue).
10) parent(janet,sue).
11) parent(fred,tim).
12) parent(janet,tim).
13) parent(diane,william).
14) parent(cathy,kit).

15) male(fred).

16) female(janet).
17) female(diane).
18) female(cathy).

19

3. Cut Can Implement NAF
Cut can be used to implement negation as fail-
ure.

not(X) :- X, !, fail.
not (X).

Note that not is a meta-logical predicate. It takes a
predicate as an argument. E.g.,

not (f1y (penguin)).

18

?- isaMother(X).
X = janet;

X = janet;

X = diane;

X = cathy;

No

7- isa(X).

X = janet;

No

?- top(X).

X = janet;

No

7- top2(X).

X = janet;

X = diane;

X = cathy;

No

?- top3(X).

X = janet;

X = janet;

X = diane;

X = cathy;

No

20



... Picnic Example 11
Returning to our Picnic Example:

holiday(friday,aprili4).
weather (friday,fair).
weather (saturday,fair).
weather (sunday,fair).
weekend (saturday) .
weekend (sunday) .

Rewrite picnic as follows:

picnic2(Day) :- weather(Day,fair), !, weekend(Day).

picnic2(Day) :- holiday(Day,aprilié4).
Query picnic2(When). yields:

7- picnic2(When) .
No

21

... Picnic Example | \V/
Recall

holiday(friday,aprili4).
weather (friday,fair).
weather (saturday,fair).
weather (sunday,fair).
weekend (saturday) .
weekend (sunday) .

Rewrite picnic as follows:

picnic4(Day) :- !, weather(Day,fair), weekend(Day).

picnic4(Day) :- holiday(Day,aprili4).
Query picnic4(When). yields:

?- picnic4(When) .

When = saturday ;
When = sunday ;
No

23

Recall

...Picnic Example III

holiday(friday,aprili4).
weather (friday,fair).
weather (saturday,fair).
weather (sunday,fair).
weekend (saturday) .
weekend (sunday) .

Rewrite picnic as follows:

picnic3(Day) :- weather(Day,fair), weekend(Day), !.
picnic3(Day) :- holiday(Day,aprilié4).

Query picnic3(When). yields:

7- picnic3(When) .

When = saturday ;
No
22
Cut Summary
Cuts are:

+ very powerful.

—+ can help:

improve efficiency (reduce search space)

get the right answer (treat exceptions
to rules)

implement NAF

remove multiple answers

— difficult to use safely.

— make for difficult to understand programs.

24



Other Useful Prolog Features

e disjunction in antecedent ';'.

e if-then-else.

25

If-then-else
If P then Q), else R can be writte as follows:
S :-P->Q ; R.

Here's an example:

max(X,Y,Z) :-
(X =<Y
-> Z=Y
; Z=X

Interestingly, one common use of the cut pred-
icate is to mimic the “if-then-else” construct
found in imperative languages. Here's how we
can define it:

S :-P, ', Q.
S :- R.

27

Disjunction in Antecedent

happy(X) :- graduated(X)
;termOver (X) .

This is equivalent to:

happy(X) :- graduated(X).
happy(X) :- termOver(X).

;' is very useful with if-then-else, as we will
see. Nevertheless, it is not considered good
programming style to use ‘;' extensively for
readability.

26

If-then-else (cont)
Another example:

Write a predicate to add an element to a list
with the restriction that no duplicates are added
to the list. Define the predicate add(X,L1,L2)
to mean " the result of adding X to L1 is L2."”

Here's how to do it with cut:

add(X,L1,L2) :- member(X,L1), !, L2 = L1.
add(X,L1,L2) :- L2 = [X|L1].

Here's how to do it using if-then-else:

add(X,L1,L2) :- member(X,L1) -> L2 = L1
; L2 = [X|L1].

28



