A Lesson in (In)efficiency:
Fibonacci

Problem: Compute the nt* Fibonacci number.

Recal, the Fibonacci numbers are gn inf[nl')te sequence

fintegers 0, 1, 1, 2. 3,.5, 8, etc. !l which each num-
ger Es %%e sum’ of the two preceding numbers in the

sequence. F(0) =0,F(1) =1, etc.
Let’s define a simple fibonacci procedure:

(define fib
; (fib n) returns the nth Fibonacci number
; Pre: n is a non-negative integer

(lambda (n)

91

Simple Fibonacci

(define fib
; (fib n) returns the nth Fibonacci number
; Pre: n is a non-negative integer

; We added some display statements so we could see what was h:

; 0f course trace also works!
(lambda (n)
(display "entering fib")
(display n)
(newline)
(cond (= n 0) 0)
(=n1) 1)

(else (+ (fib (- n 1)) (fib (- n 2))))

Problem: Procedure is doubly recursive.
Complexity is exponential!

92

Let’s Run Simple Fibonacci

1 I=> (fib 6)

entering
entering
entering
entering
entering
entering
entering
entering
entering
entering
entering
entering
entering
entering
entering
entering
entering
entering
entering
entering
entering
entering
entering
entering
entering

;Value: 8

fib6
fib4
fib2
£ib0
fibl
fib3
fib1l
fib2
£ib0
fib1l
fibb
£ib3
fibl
fib2
£ib0
fibl
fib4
fib2
£ib0
fib1
£ib3
fib1
fib2
£ib0
fib1

1 1=> (fib 3)

entering
entering

£ib3
fibl

93

entering fib2
entering fib0
entering fibil
;Value: 2

Trace of Simple Fibonacci

1 1=> (trace fib)

;Unspecified return value

1 1=> (fib 3)

[Entering #[compound-procedure
Args: 3]

entering fib3
[Entering #[compound-procedure

Args: 1]
entering fibil
[1
<== #[compound-procedure
Args: 1]
[Entering #[compound-procedure
Args: 2]

entering fib2
[Entering #[compound-procedure

Args: 0]
entering fib0
[o
<== #[compound-procedure
Args: 0]
[Entering #[compound-procedure
Args: 1]
entering fibil
[1
<== #[compound-procedure
Args: 1]
[1

fib]

fib]

fib]

fib]

fib]

fib]

fib]

fib]

94

<== #[compound-procedure 1 fib]

Args: 2]
[2
<== #[compound-procedure 1 fib]
Args: 3]
;Value: 2

Faster Fibonacci Faster Fibonacci (cont.)

; (fast-fib pl p2 i n) returns the nth Fibonacci number
;Pre: n>=0 is an integer, 0<=i<=n is an integer

; pl is the ith Fibonacci number

; P2 is the i+1th Fibonnacci number

Hint: Use an accumulator (or two!) to store
intermediate values.

; (fast-fib pl p2 i n) returns the nth Fibonacci number (define fast-fib

N (lambda (p1 p2 i n)

;Pre: n>=0 is an integer, 0<=i<=n is an integer
; Pl is the ith Fibonacci number
; P2 is the i+1th Fibonnacci number

(define fast-fib
(lambda (p1 p2 i n)

(display "entering fast-fib ")
(display i)
(newline)
(if (= i n)
pl
(fast-fib p2 (+ pl p2) (+ i 1) n))

; (fib n) returns the nth Fibonacci number
; Pre: n is a non-negative integer
(define fib
(lambda (n)
(fast-fib 0 1 0 n)))

Time complexity of this fib procedure is linear!

Lesson: Accumulators are useful for writing
efficient code. (e.g., factorial, reverse, etc.)

95 96

Let’s Run Faster Fibonacci Trace of Faster Fibonacci

1 1=> (fib 6) 1 1=> (trace fast-fib)
entering fast-fib
entering fast-fib
entering fast-fib
entering fast-fib
entering fast-fib
entering fast-fib 1
entering fast-fib 0
;Value: 8 3]

entering fast-fib O

[Entering #[compound-procedure 1 fast-fib]

1 1=> (fib 3) Args: 1

;Unspecified return value
1 1=> (fib 3)

[Entering #[compound-procedure 1 fast-fib]
Args: O

O WNEFEO

entering fast-fib O 1
entering fast-fib 1 3]
entering fast-fib 2 entering fast-fib 1
entering fast-fib 3 [Entering #[compound-procedure 1 fast-fib]
;Value: 2 Args:;
2
3]

entering fast-fib 2
[Entering #[compound-procedure 1 fast-fib]
Args: 2
3
3
3]
entering fast-fib 3
[2

97

<== #[compound-procedure 1 fast-fib]
Args: 2

3 Other Useful Scheme: Strings
3
3]
[2
<== #[compound-procedure 1 fast-fib] Sequences_ Of_ Characters. . .
Args: 1 Written within double quotes, e.g., "hi mom
2
2 Useful string predicate procedures:
3]
[2 string=? <stringl> <string2> .::3
<== #[compound-procedure 1 fast-fib] S%rlngéz7<str1ngl> <string2>
Args: 1 string<=7 ...
1 etc.
1
3] Case-insensitive versions:
[2
<== #[compound-procedure 1 fast-fib] string-ci=7 <stringl> <string2> .° g
Args: O string-ci<? <stringl> <string2> ."°
& Ty string-ci<=7 ...
0 -
3] Other string procedures:
;Value: 2

(string-length <string>)
(string->symbol <string>)
(symbol->string <symbol>)
(string->list <string>)
(list->string <list>)

99

Other Useful Scheme Procedures

Input and OCutput

(read ...) ; reads and returns an expression
(read-char ...) ; reads & returns a character
(peek-char ...) ; returns next avail char w/o updating
(char-ready? ...) ; returns #t if char has been entered
(write-char ...) ; outputs a single character

(write <object> ...) j outputs the object

gdisglay <object> .**) outputs the dbject (pretty)
newline) ; outputs end-of-line

;3 Display a number of objects, with a space between each.

(define display-all
(lambda 1st
(cond ((null? 1st) ())
((null? (cdr 1st)) (display (car 1st)) ())
(else (display (car 1st)) (display " ")
(apply display-all (cdr 1st))))

)

(define 1st ’(a b ¢ d))
(display-all "List: " 1st "\n") ; List (a b ¢ d) <cr>
(apply display-all 1lst) ; abcd

Reading/writing files

(open-input-file)
(open-output-file)

100

Syntactic Forms

if, begin, or, and are useful syntactic forms.

They have lazy evaluation, i.e., their subexpressions are
not evaluated until required.

Let's look at lazy evaluation and how to exploit it.

(if (=n 0)
(display "oops")
(/ 1 n))

if is evaluated left to right. The "else part” is only
evaluated as necessary, so (/ 1 n) is only evaluated if
the conditional expression is false.

Imagine if if were implemented as a procedure. We'd
be in trouble! It's a syntactic form so it's evaluation is
different.

101

Syntactic Forms (cont.)

(begin exprl expr2 ...)

begin evaluates it subexpressions from left to right and
returns the value of the last subexpression. begin can be
used to sequence assignment statements, inputs/outputs,
or other operations that cause side effects. E.g.,

(begin
(display "this is line 1 of the message")
(display "this is line 2 of the message")
#£

102

Syntactic Forms (cont.)

(or) => #f
(or (= 0 1= 0 2f= 0 0)) => #t
(or #f) => #f
(or #f #t) => #t
(or #f ’a #f) => a (treated as #t in a conditional)

or evaluates its subexpressions from left to right until
either (a) one expression is true, or (b) no more expres-
sions are left. In case (a), the value is true, in (b) the
value is false.

Important subtlety: Every Scheme object is considered
to be either true or false by conditional experssions and
by the procedure not. Only #f (i.e., ()) is considered
false; all other objects are considered true.

(and) => #t

(and (= 00) (=0 1) (=0 2)) => #f

(and #f) => #f

(and #t #t) => #t

(and #t #f) => #f

(and ’a ’b ’c) => ¢ (treated as #t in a conditional)

and evaluates its subexpressions from left to right until
(a) one expression is false, or (b) no more expressions

are left. In case (a), the value is false, in (b) the value

is true.
103

Clever Exploitation of Syntactic
Forms and Lazy Evaluation

When Lazy Evaluation isn’'t or
friend

(define (validate-bindings expr bindings)
(cond ((C...) ...)
(... .0
((symbol? expr)
(debug-display "Symbol:" expr)
(or (get-binding expr bindings)
(builtin? expr)
(begin
(display-error ’unbound expr)
#f

etc.

As soon as one of the conditions in the or statement
is true, Scheme stops evaluating. This can be used to

advantage. Similarly with and and evaluation to false.

104

Problem: Sometimes lazy evaluation works against you.

Challege with validate-bindings is that it's a predicate
procedure, so it must return #t/() depending upon
whether the expression has valid bindings, but you must
go through the entire list, even after you generate your
first (). How do you do this?

Hint: There is a construct in Scheme that forces evalu-
ation of a series of expressions before performing some
operation on it. (there are many, actually!) Let’s think

of one we’'ve seen in class and use it.

105

