Polymorphic and Monomorphic
Functions

e Polymorphic functions can be applied to
arguments of many forms

e The function length is polymorphic: it works
on lists of numbers, lists of symbols, lists
of lists, lists of anything

e The function square is monomorphic: it
only works on numbers

65

Higher-order Procedures: map

Example:
(mymap abs ’(-1 2 -3 4)) =
(123 4)

(mymap (lambda (x) (+ 1 x)) (-1 2 -3)) =
(0 3 -2)

The built-in map will produce the same re-
sults, but note that the built-in map can
take more than two arguments:

(map cons ’(a b c) "((1) (2) (3))) =
((a 1) (b 2) (c 3

69

Higher-Order Procedures

Higher-Order Procedures

Procedures as input values:

(define (all-num 1lst)
(or (null? 1st)
(and (number? (car 1st))
(all-num (cdr 1st))))
)
(define (all-num-f f 1st)
(cond ((all-num 1lst) (f 1st))
(else ’error))
)
1 1=> (all-num-f abs-list ’(1 -2 3))
;Value 1: (1 2 3)

1]=> (all-num-f abs-list ’(1 a))
;Value: error

66

What's Wrong Here??

11=>
(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else (+ (map atomcount s)))
N
;Value: atomcount
1]=> (atomcount ’(a b))

;The object (1 1), passed as an argument
;to +, is not the correct type.

2 error>

Why doesn’t this work?

70

Procedures as returned values:

(define (plus-list x)
(cond ((number? x)
(lambda (y) (+ (sum-n x) y)))
((1ist? x)
(lambda (y) (+ (sum-list x) y)))
(else (lambda (x) x))
N
1 1=> ((plus-list 3) 4)
;Value: 10

1 1=> ((plus-list ’(1 3 5)) b)
;Value: 14

67

Built-In Higher-Order Procedures:
map

Using eval to Correct the Problem

(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else
(eval
(cons ’+ (map atomcount s)) ’()))

»
1 1=> (atomcount ’(a b))
;Value: 2

1 1=> (atomcount ’((1) (2 3 (4)) ((((5))))))

;Value: 5

71

There is a built-in procedure map. Let's define
our own restricted version first....

(define (mymap f 1)
(cond ((null? 1) *())
(else (cons (f (car 1))
(mymap f (cdr 1))))
N

e mymap takes two arguments: a function and
a list

e mymap builds 2 new list whose elements are
the result of applying the function to each
element of the (old) list

68

Limitations of Using eval

BUT: eval only works in the current defini-
tion of atomcount because numbers evaluate to
themselves.

11=>(+123)
;Value: 6

1]=> (cons ’+ (1 2 3))
;Value 12: (+ 1 2 3)

1 1=> (eval (coms ’+ *(1 2 3)) *())
;Value: 6

72

Using eval to Evaluate Expressions

1 1=> (append ’(a) ’(b))

;Value 13: (a b)

1]=> (cons ’append ’((a) (b)))
;Value 14: (append (a) (b))

1]=> (eval (cons ’append ’((a) (b))) ’())
;Unbound variable: b

1 1=> (cons ’append ’(’(a) ’(b)))
;Value 15: (append (quote (a)) (quote (b)))

1 1=> (eval
(cons ’append ’(’(a) ’(©))) ()
;Value 16: (a b)

Too complicated!!

73

Higher-order Procedures: my-reduce

Given union, which takes two lists representing
sets and returns their union:

1 1=> (apply union ’((1 3)(2 3 4)))
;Value 21: (1 2 3 4)

1 1=> (apply union ’((1 3)(2 3)(4 5)))
;The procedure #[compound-procedure union]
;has been called with 3 arguments;

;it requires exactly 2 arguments.

1 1=> (reduce union ’((1 3)(2 3)(4 5)) ()
;Value 22: (1 2 3 4 5)

Question: How would you have to change
my-reduce to be able to take intersection as
its function argument?

77

Applying Procedures with apply

1 1=> (apply + ’(1 2 3))
;Value: 6

1 1=> (apply append ’((a) (b)))
;Value 5: (a b)

11=>
(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else
(apply + (map atomcount s)))))

;Value: atomcount

1]=> (atomcount ’(a (b) c))
;Value: 3

74

Important

Note that Scheme has a built-in higher-order

procedure reduce that is different from my-reduce.

You may use my-reduce in assignments and tests.
In assignments, you would of course have to
define it by copying the code provided here. In
tests, you may use it without defining it.

78

Higher-order Procedures: my-reduce

(define (my-reduce op 1 id)
(if (null? 1)
id
(op (car 1)
(my-reduce op (cdr 1) id))
»

A binary — n-ary procedure.
The my-reduce procedure takes a binary oper-
ation and applies it right-associatively to a list

of an arbitrary number of arguments.

NOTE: my-reduce is not equivalent to apply.

75

Example Practice Procedures

cdrLists: given a list of lists, form new list
giving all elements of the cdr’'s of the sub-
lists.

((12) (345)(6) = (245)

swapFirstTwo: given a list, swap the first
two elements of the list.
(1234)=(2134)

swapTwolnLists: given a list of lists, form
new list of all elements in all lists, with first
two of each swapped.
((123)(4)(56))=(213465)

addSums: given a list of numbers, sum the
total of all sums from O to each number.
(135) =22

79

Higher-order Procedures: my-reduce

(my-reduce + (1 2 3) 0) = 6:

(my-reduce + ’(1 2 3) 0)

(+ 1 (my-reduce + ’(2 3) 0))

(+ 1 (+ 2 (my-reduce + ’(3) 0)))

(+ 1 (+ 2 (+ 3 (my-reduce + () 0))))
(+1 (+2 (+30)))

6
Note: (+ 1 23) = 6

(my-reduce / (24 6 2) 1) = 8

(my-reduce / ’(24 6 2) 1)

(/ 24 (my-reduce / ’(6 2) 1))

(/ 24 (/ 6 (my-reduce / ’(2) 1)))

(/ 24 (/ 6 (/ 2 (my-reduce / () 1))))
(/24 (/6 (/21))

8
Note: (/ 24 6 2) = 2

76

More Practice Procedures

addToEnd: add an element to the end of
a list.
(addToEnd 'a (@ bc)) = (abca)

revLists: given a list of lists, form new list
consisting of all elements of the sublists in
reverse order.
((12)(345)(6)=>(654321)

revListsAll: given a list of lists, form new
list from reversal of elements of each list.
((12)(345)(6))=(215436)

80

Passing procedures: prune

Suppose we want a procedure that will test ev-
ery element of a list and return a list containing
only those that pass the test.

We want it to be very general: it should be

able to use any test we might give it. How will
we tell it what test to apply?

What should a procedure call look like?
Example: Prune out the elements of myList
that are not atoms.

Now let's write the procedure.

81

set!

Global Assignment (Generally EVIL!)
When an assignment statement is applied to variables
(i.e., memory locations) that are:
e maintained AFTER the procedure call is completed.
e are used for their values in this or other procedures.
it violates referential transparency and destroys the

ability to statically analyze source code (formally and
intuitively).

Eg.
(define g 10) ; define global variable g

(define (func a)
(set! g (* g @) ; globally assign g=g*g
(+ ag

1=> (func 7)
107

1=> (func 7)
10007 ; BAD!

85

; Return a new list containing only the elements of 1ist
; that pass the test.
. Precondition:

(define prune
(lambda (test 1st)
(cond ((null? 1st) ’())
((test (car 1st))
(cons (car 1st)
(prune test (cdr 1st))
)
)
(else (prune test (cdr 1st)))

)
Sample run

1 1=> (define (atom? x) (not (pair? x)))
;Value: atom?

1 1=> (prune atom? *((3 1) 4 (xy z) x)y O))
;Value 12: (4 y ()

1 1=> (prune null? ’(() (abc) (12) () () (x (yw 2)))

sValue 13: (O O)
82

set! (cont.)

(set! <var> <expr>)

alters the value of an existing binding for var.
Evaluates expr then assigns var to expr.

Useful for implementing counters, state change
or for caching values.

References: Dybvig

86

Write calls to prune that will prune myList in
these ways:

e Prune out elements that are null.

e (Assume myList contains lists of integers.)
Prune out elements whose minimum is not
at least 50.

Hint: there is a built-in min procedure.

e (Assume myList contains lists.) Prune out
elements that themselves have more than 2
elements.

This is becoming tedious. We need tc declare
a procedure for each possible test we might
dream up.

83

Passing Anocnymous Procs

set! (cont.)

1 1=> (define myList
(O (@be) (12) O) x(yw =)
;Value: mylist

1 1=> (prune (lambda (x) (not (null? x))) myList)
;Value 4: ((a b c) (12) (O) (x (y w 2z))

1 1=> (define myList ’((59 72 40) (85 70 88 56)))
;Value: mylist

1 1=> (prune (lambda (x) (> (apply min x) 50)) myList)
;Value 5: ((85 70 88 56))

1]=> (define myList ’((23 34) (10 1 3 4) () (2 3 4)))
;Value: mylist

1]=> (prune (lambda (x) (<= (length x) 2)) myList)
sValue 6: ((23 34) ()

84

(define cons-count 0)
(define cons
(let ((old-cons coms))
(lambda (x y)
(set! cons-count (+ cons-count 1))
(old-cons x y)

(cons ’a ’(b ¢)) => (abc)

cons-count => 1

(cons ’a (cons ’b (cons 'c ()))) => (a b c)
cons-count => 4

What's the problem?

87

set! (cont)

(define count
(let ((next 0))
(lambda ()
(let (v mext))
(set! next (+ mext 1))
v))))

count => 0
count => 1

88

More on Efficiency

We previously saw that helper procedures and
local variables (let, let*) can improve the ef-
ficiency of a Scheme program. A third way
of improving efficiency (sometimes) is through
the use of an accumulator.

Trace the following two procedures. What is
their complexity?

(define (revi 1st)
(cond ((null? 1st) *())
(else (append
(revil (cdr 1st))
(list (car 1st)))

89

Trace of Simple Fibonacci

1 1=> (fib 3)

[Entering #[compound-procedure 1 fib]
Args: 3]
[Entering #[compound-procedure 1 fib]
Args: 1]
[1
<== #[compound-procedure 1 fib]
Args: 1]
[Entering #[compound-procedure 1 fib]
Args: 2]
[Entering #[compound-procedure 1 fib]
Args: 0]
[1
<== #[compound-procedure 1 fib]
Args: 0]
[Entering #[compound-procedure 1 fib]
Args: 1]
[1
<== #[compound-procedure 1 fib]
Args: 1]
[2
<== #[compound-procedure 1 fib]
Args: 2]
[3
<== #[compound-procedure 1 fib]
Args: 3]
;Value: 3

93

More on Efficiency

Using an accumulator new.

(define (rev2 lst new)
(cond ((null? 1st) new)
(else (rev2 (cdr 1lst)
(cons (car 1st) new)))

90

Faster Fibonacci

Hint: Use an accumulator (or two!) to store
intermediate values.

(fast-fib p1 p2 i n) returns the nth Fibonacci number
Pre: n>=0 is an integer, 0<=i<=n is an integer,
pl is the (i-1)th Fib number (or C if i is 0), and
p2 is the ith Fib number.
define fast-fib
(lambda (p1 p2 i n)

94

A Lesson in (In)efficiency:
Fibonacci

Problem: Compute the nth Fibonacci number.

Recall, the Fibonacci numbers are an infinite

sequence of integers 0, 1, 1, 2, 3, 5, 8, etc.’
in which each number is the sum of the two

preceding numbers in the sequence.

Let's define a simple fibonacci procedure:

(define fib

; (fib n) returns the nth Fibonacci number

; Pre: n is a non-negative integer
(lambda (n)

91

Faster Fibonacci (cont.)

(fast-fib pl p2 i n) returns the nth Fibonacci number
Pre: n>=0 is an integer, 0<=i<=n is an integer,
pl is the (i-1)th Fib number (or O if i is 0), and
p2 is the ith Fib number.
define fast-fib
(lambda (p1 p2 i n)
(if (=i m)
p2
(fast-fib p2 (+ p1 p2) (+ i 1) n))

)

; (£fib n) returns the nth Fibonacci number
; Pre: n is a non-negative integer
(define fib
(lambda (n)
(fast-fib 0 1 0 n)
)

Time complexity of this fib procedure is linear!

Lesson: Accumulators are useful for writing
efficient code. (e.g., factorial, reverse, etc.)
95

Simple Fibonacci

(define fib
; (fib n) returns the nth Fibonacci number
; Pre: n is a non-negative integer
(lambda (n)
(cond ((=n 0) 1)
((=n 1) 1)
(else (+ (fib (- n 1)) (fib (- n 2))))

Problem: Procedure is doubly recursive.
Complexity is exponential!

(fib 4) calls (fib 3) and (fib 2),
(fib 3) calls (fib 2) and (fib 1), etc.

92

Trace of Faster Fibonacci

1 1=> (fib 3)

[Entering #[compound-procedure 2 £ib]
Args: 3]
[Entering #[compound-procedure 3 fast-fib]
10

1
0
3]

[Entering #[compound-procedure 3 fast-fib]

Args: 1

1
1
3]
[Entering #[compound-procedure 3 fast-fib]
Args: 1

2

2
3l

[Entering #[compound-procedure 3 fast-fibl
Args: 2

3
3l

<== #[compound-procedure 3 fast-fib]
Args: 2
3

3
3l

96

<== #[compound-procedure 3 fast-fib]

Args: 1
2
2
3]
[3
<== #[compound-procedure 3 fast-fib]
Args: 1
1
1
31
3
<== #[compound-procedure 3 fast-fib]
Args: ©
1
0
3]
[3
<== #[compound-procedure 2 fib]
Args: 3]
;Value: 3
Syntactic Forms (cont.)
(or) => #f

(or (=01) (=02) (=00)) =>#t

(or #£) => #f

(or #f #t) => #t

(or #f ’a #f) => a (treated as #t in a conditional)

or evaluates its subexpressions from left to right until
either (a) one expression is true, or (b) no more expres-
sions are left. In case (a), the value is true, in (b) the
value is false.

Important subtlety: Every Scheme object is considered
to be either true or false by conditional experssions and
by the procedure not. Only #f (i.e., ()) is considered
false; all other objects are considered true.

(and) => #t

(and (=0 0) (=01) (=0 2) => #f

(and #£) => #f

(and #t #t) => #t

(and #t #£) => #f

(and ’a ’b ’c) => ¢ (treated as #t in a conditional)

and evaluates its subexpressions from left to right until
(a) one expression is false, or (b) no more expressions
are left. In case (a), the value is false, in (b) the value
is true.

100

Other Useful Scheme: Strings

Sequences of characters.
Written within double quotes, e.g., " hi mom"”

Useful string predicate procedures:

(string=7 <stringl> <string2> ...)
(string<? <stringl> <string2> ...)
(string<=? ...

etc.

Case-insensitive versions:

(string-ci=7 <stringl> <string2> ...)
(string-ci<? <stringl> <string2> ...)
(string-ci<=? ...

Other string procedures:

(string-length <string>)
(string->symbol <string>)
(symbol->string <symbol>)
(string->list <string>)
(list->string <list>)

97

Clever Exploitation of Syntactic
Forms and Lazy Evaluation

(define (validate-bindings expr bindings)
(cond ((...) ...)
.y ..
((symbol? expr)
(debug-display "Symbol:" expr)
(or (get-binding expr bindings)
(builtin? expr)

(begin
(display-error ’unbound expr)
#f
)

As soon as one of the conditions in the or statement
is true, Scheme stops evaluating. This can be used to
advantage. Similarly with and and evaluation to false.

101

Other Useful Scheme Procedures

Input and Output

(read ...) reads and returns an expression
(read-char ... reads & returns a character
(peek-char ... returns next avail char w/o updating

returns #t if char has been entered
outputs a single character

(char-ready? ...
(write-char ..

(write <object> ...) ; outputs the object
(display <object> ...) ; outputs the object (pretty)
(newline) ; outputs end-of-line

;; Display a number of objects, with a space between each.

(define display-all
(lambda 1st
(cond ((null? 1st) ())
((null? (cdr 1st)) (display (car 1st)) ())
(else (display (car 1st)) (display " ")
(apply display-all (cdr 1st))))

)

(define 1lst ’(a b c d))
(display-all "List: " 1st "\n") ; List (a b ¢ d) <cr>
(apply display-all 1st) ;abcd

Reading /writing files

(open-input-file)
(open-output-file)

98

Syntactic Forms

if, begin, or, and are useful syntactic forms.

They have lazy evaluation, i.e., their subexpressions are
not evaluated until required.

Let’s look at lazy evaluation and how to exploit it.

(if (=n 0)
(display "oops")
(/ 1 n))

if is evaluated left to right. The "else part" is only
evaluated as necessary, so (/ 1 n) is only evaluated if
the conditional expression is false.

Imagine if if were implemented as a procedure. We'd
be in trouble!
(begin

(display "this is line 1 of the message")

(display "this is line 2 of the message")
#f

begin evaluates it subexpressions from left to right and
returns the value of the last subexpression.

99

