EXxpressions

Common structure for both procedures and data.
In Scheme, functions are called procedures.

When an expression is evaluated it creates a value or list
of values that can be embedded into other expressions.
Therefore programs can be written to manipulate other
programs.

<expression> --> <variable>
<literal>

<procedure call>
<lambda expression>
<conditional>
<assignment>
<derived expression>

Se
http://swiss.csail.mit.edu/~ jaffer/r5rs_9.html#SECT2

for the full syntax, if you're interested.

20

Variables

Any identifier that is not a syntactic keyword is a vari-
able.

To bind a name to a value:
(define var value)

1 1=> (define a 2)

;Value: a

1 1=> (define b 4)
;Value: b

1 1=> (define c (+ a b))
;Value: ¢

11=>c¢
;Value: 6

1]1=> (define a 7)
;Value: a

11=>c¢
;Value: 6

Hey...could define be a procedure?

24

Literals

Literals are quoted datum or anything that is self~evaluating,

i.e., (quoted) booleans, numbers, characters, strings
quoted lists, quoted vectors are all literals. E.g.,

#t evaluates to #t (true)

() evaluates to () (false)

#f evaluates to () (also false)

5 evaluates to 5

’5 evaluates to 5

1/2 evaluates to 1/2

"Scheme Rocks" evaluates to "Scheme Rocks"
>(a b ¢ d) evaluates to (a b ¢ d) (list)

>(1 (2 3) 4) evaluates to (1 (2 3) 4) (list)

Experiment with the Scheme interpreter!

More on lists scon....

21

Built-In Procedures

eq?: identity on atoms

null?: is list empty?

car: selects first element of list

cdr: selects rest of list

element to front of list

quote or ’: produces constants

25

(cons element 1list): constructs lists by adding

Procedure Application

The main form of a Scheme expression is the

procedure applicatio. (Terminology: in Scheme,

the official name for what you would think of
as a function is procedure.)

(procedure argl arg2 .'' argn)

Evaluation

e Each argument is evaluated.
e The procedure is applied to the results.

Exception: syntactic forms.

Syntactic forms violate the rule—they are built
in to the language toc handle cases the rule
above can’'t handle. Examples: define, if,
cond, lambda---more on this later.

22

Built-In Procedures

e () is the empty list

e (car (a b c)) =

e (car ’((a) b (c d))) =

e (cdr ’(a b c)) =

e (cdr ’((a) b (¢ d))) =

26

Examples

e (- 1) evaluates to -1

e (¥ 5 7) evaluates to 35

e (+1 2 (x 2 3)) evaluates to ¢

o (+ (-63) (/10 2) 2 (x 2 3)) evals to 16
e (cos 0) evaluates to 1

Exercise: run Scheme and try the arithmetic

operators with 0, 1, 2 and 3 arguments, and
figure out how the results make sense.

23

e car and cdr can break up any list:
— (car (cdr (cdr ’((a) b (c d))))) =

— (caddr ’((a) b (c d)))

cons can construct any list:

— (coms ’a ’()) =

— (cons ’d ’(e)) =

— (cons ’(a b) ’(c d)) =

— (cons ’(a b ¢) ‘((a) b)) =

27

Lists

A simple but powerful general-purpose datatype.

(How many datatypes have we seen so far?)

(1 #t 1)
O
1 (@23 O

Building block: the cons cell.

I

1 0

2 3

Note: Sometimes you'll see NIL. This is 1gISP
notation! In Scheme, we use ().

Other Predicate Procedures

A few more examples....
e (number? ’sam) evaluates to ()
e (null? ’(a)) evaluates to ()
e (zero? (- 3 3)) evaluates to #t
e (zero? ’(- 3 3)) = type error
e (list? (+ 3 4)) evaluates to ()
e (1ist? ’(+ 3 4)) evaluates to #t

e (pair? ’(a . c¢)) evaluates to #t

32

Things you should know about
cons, pairs and lists

The pairor cons cell is the most fundamental of Scheme's
structured object types.

A list is a sequence of pairs; each pair's cdr is the next
pair in the sequence.

The cdr of the last pair in a proper list is the empty
list. Otherwise the sequence of pairs forms an improper
list. L.e., an empty list is a proper list, and and any pair
whose cdr is a proper list is a proper list.

An improper list is printed in dotted-pair notation with
a pericd (dot) preceding the final element of the list. A
pair whose cdr is not a list is often called a dotted pair

cons VS. list: The procedure cons actually builds pairs,
and there is no reason that the cdr of a pair must be a
list, as illustrated on the next page.

The procedure list is similar to cons, except that it

takes an arbitrary number of arguments and always builds
a proper list.

E.g., (1ist ’a ’b ’¢c) — (a b c)

29

READ-EVAL-PRINT Loop

READ: Read input from user:
a procedure application
EVAL.: Evaluate input:

(f argy argp ...argn)

1. evaluate f to obtain a procedure

2. evaluate each arg; to obtain a value
3. apply procedure to argument values

PRINT: Print resulting value:
the result of the procedure application

33

More about lists

A list in dotted-pair notation:
(abc) >(@a. (bB. (c. O

1 1=> (define foo ’(a . (b . (c . ON))
;Value: foo

1 1=> (1list? foo)
;Value: #t

1]1=> (pair? foo)
;Value: #t

Proper lists:
O, (a (b (c) @) e)

(cons ’a ’(b)) — (a b)
Dotted pairs (improper lists):
(cons ’a ’b) = (a . b)
(car ’(a . b)) = a
(cdr ’(a . b)) = b
(cons ’a (b . c¢)) > (ab . <

30

READ-EVAL-PRINT Loop
Example

1 1=> (cons ’a (coms ’b ’(c d)))
;Value 1: (a b ¢ d)

1. Read the procedure application
(cons ’a (cons ’b ’(c d)))

2. Evaluate cons to obtain a procedure
3. Evaluate ’a to obtain a itself

4. Evaluate (cons ’b ’(c d)):
(a) Evaluate cons to obtain a procedure
(b) Evaluate ’b to obtain b itself
(c) Evaluate ’(c d) to obtain (¢ d) itself
(d) Apply the cons procedure to b and (c d)

to obtain (b c @)

5. Apply the cons procedure to a and (b ¢ d)
to obtain (a b ¢ d)

6. Print the result of the application:
(abcad

34

Other (Predicate) Procedures

Predicate procedures return #t or () (i.e., false).

e = < > <= >= number comparison ops

e Run-time type checking procedures:
— All return Boolean values: #t and ()
— (number? 5) evaluates to #t
— (zero? 0) evaluates to #t
— (symbol? ’sam) evaluates to #t
— (1list? ’(a b)) evaluates to #t
— (pair? ’(a b)) evalutates to #t

— (null? ’()) evalutates to #t

31

Quotes Inhibit Evaluation

;;Same as before:
1 1=> (cons ’a (coms ’b ’(c d)))
;Value 2: (a b c d)

;;Now quote the second argument:
1 1=> (cons ’a ’(cons ’b ’(c d)))
;Value 3: (a cons (quote b) (quote (c d)))

;;Instead, un-quote the first argument:
1]=> (cons a (cons ’b ’(c d)))
;Unbound variable: a

;To continue, call RESTART...

2 error> “C°C

11=>

35

Quotes vs. Eval

;;Some things evaluate to themselves:
1 1=> (list 1 42 #t #f ())
;Value 4: (1 2 #t O ()

;;They can alsc be quoted:
1 1=> (list 1 42 *#t "#f *())
;Value 5: (1 2 #t O ()

Eval Activates Evaluation

11=>(+12)
;Value 6: (+ 1 2)

;;Eval can be used to evaluate an expression
1 1=> (eval ’(+ 1 2) °())
;Value 7: 3

36

Conditional Execution: cond

(cond (<conditionl> <resulti>)
(<condition2> <result2>)

(<conditionN> <resultN>)
(else <else-result>) ;optional else
) ;clause
1. Evaluate conditions in order until obtaining
one that returns a true value
2. Evaluate and return the corresponding re-
sult
3. If none of the conditions returns a true
value, evaluate and return <else-result>

40

READ-EVAL-PRINT Loop

Procedure Definition

Can also be used to define procedures.

READ: Read input from user:
a symbol definition

EVAL.: Evaluate input:
store function definition

PRINT: Print resulting value:
the symbol defined

Example:

1]1=> (define (square x) (* x x))

;Value: square

37

Conditional Execution: cond

(define (abs-val x)
(cond ((>= x 0) x)
(else (- x))

(define (rest-if-first e lst)
(cond ((null? 1st) "))
((eq? e (car 1st)) (cdr 1lst))
(else *())

41

Two syntaxes for definition:

1. (define (<fcn-name> <fcn-params>)
<expression>)
(define (square x)

(* x x))

(define (mean x y)
/ (+xy) 2)

2. (define <fcn-name> <fcn-value>)

(define square
(lambda (n) (* n n)))

(define mean
(lambda (x y) (/ (+ x y) 2)))

Lambda procedure syntax enables the creation
of anonymous procedures. More on this later!
38

Conditional Execution: if

(if <condition> <resultl> <result2>)

1. Evaluate <condition>

2. If the result is a “true value” (i.e., any-
thing but () or #f), then evaluate and re-
turn <resulti>

3. Otherwise, evaluate and return <result2>

(define (abs-val x)
Gf (>=x 0) x (- x)))

(define (rest-if-first e 1st)
(if (eq? e (car 1st)) (cdr 1st) *()))

39

Conditional vs. Boolean
Expressions

Conditional vs. Boolean
Expressions

Write a procedure that takes a parameter x and
returns #t if x is an atom, and false otherwise.
Using cond:

(define (atom? x)
(cond ((symbol? x) ’#t)
((number? x) ’#t)
((char? x) ’#t)
((string? x) ’#t)
((null? x) °#t)
(else ()

42

Now write atom? without using cond:

(define (atom? x)
(if (symbol? x) ’#t
(if (number? x) ’#t
(if (char? x) ’#t
(if (string? x) ’#t
(if (null? x) ’#t ())

43

Better atom? procedure

Any list is a pair (dotted pair with CAR and
CDR), except the empty list (which is both list
and atom).

(define (atom? x)
(if (pair? x) () ’#t)
)

(define (atom? x)

(cond ((pair? x) ())
(else ’#t)

44

