EXxpressions Literals

Common structure for both procedures and data. Literals are quoted datum or anything that is self-evaluating,
In Scheme, functions are called procedures. i.e., (quoted) booleans, numbers, characters, strings

o . . quoted lists, quoted vectors are all literals. E.g.,
When an expression is evaluated it creates a value or list
of values that can be embedded into other expressions.
Therefore programs can be written to manipulate other #t evaluates to #t (true)
programs.

() evaluates to () (false)

< ion> --> <vari >
expression variable #f evaluates to () (also false)

| <literal>

| <procedure call> 5 evaluates to 5

I <1a.mbda expressi0n>)5 evaluates to 5

| <conditional>

| <assignment> 1/2 evaluates to 1/2

| <derived expression> "Scheme Rocks" evaluates to "Scheme Rocks"

(. .

’(a b c d) evaluates to (a b ¢ d) (list)

See (1 (2 3) 4) evaluates to (1 (2 3) 4) (list)
http://swiss.csail.mit.edu/"jaffer/rbrs_9.html1#SEC72 Experiment with the Scheme interpreter!

for the full syntax, if you're interested.
y R More on lists soon....

20 21

Procedure Application

The main form of a Scheme expression is the
procedure application. (Terminology: in Scheme,
the official name for what you would think of
as a function is procedure.)

(procedure argl arg2 .°° argn)

Evaluation

e Each argument is evaluated.
e T he procedure is applied to the results.

Exception: syntactic forms.

Syntactic forms violate the rule—they are built
in to the language to handle cases the rule
above can't handle. Examples: define, if,
cond, lambda---more on this later.

22

Examples

(- 1) evaluates to -1

(x 5 7) evaluates to 35
(+ 12 (x 2 3)) evaluates to 9
(+ (-63) (/10 2) 2 (*x 2 3)) evals to 16

(cos 0) evaluates to 1

Exercise: run Scheme and try the arithmetic
operators with 0, 1, 2 and 3 arguments, and
figure out how the results make sense.

23

Variables Built-In Procedures

Any identifier that is not a syntactic keyword is a vari-
able. e eq?: identity on atoms

To bind a name to a value:

2 is | ?
(define var value) e null?: is list empty~

, e car: selects first element of list
1 1=> (define a 2)

;Value: a .
e cdr: selects rest of list

1 1=> (define b 4)

sValue: b e (cons element list): constructs lists by adding
1 1=> (define c (+ a b)) element to front of list

;Value: ¢

171=> c e quote Or ’: produces constants

;Value: 6

1 1=> (define a 7)
;Value: a

1 1=>c¢

;Value: 6

Hey...could define be a procedure?

24 25

Built-In Procedures

> () is the empty list

(car

(car

(cdr

(cdr

>(a b c)) =

’((a) b (c d)))

>(a b c)) =

’((a) b (c d)))

26

e car and cdr can break up any list:
— (car (cdr (cdr ’((a) b (c d))))) =

— (caddr ’((a) b (c d)))

e cons Can
— (cons
— (cons
— (cons
— (cons

construct any list:

’a 7()) =

’d ’(e)) =

’(a b) ’(c d)) =
’(abc) ‘((a) b)) =

27

Lists

A simple but powerful general-purpose datatype.
(How many datatypes have we seen so far?)

(1 #t 1)
O
(1 (23 O)

Building block: the cons cell.

DT

0

0

2 3

Note: Sometimes you'll see NIL. This is 4gISP
notation! In Scheme, we use Q).

Things you should know about
cons, pairs and lists

The pair or cons cellis the most fundamental of Scheme’s
structured object types.

A list is a sequence of pairs; each pair's cdr is the next
pair in the sequence.

The cdr of the last pair in a proper list is the empty
list. Otherwise the sequence of pairs forms an improper
list. I.e., an empty list is a proper list, and and any pair
whose cdr is a proper list is a proper list.

An improper list is printed in dotted-pair notation with
a period (dot) preceding the final element of the list. A
pair whose cdr is not a list is often called a dotted pair

cons VS. list: The procedure cons actually builds pairs,
and there is no reason that the cdr of a pair must be a
list, as illustrated on the next page.

The procedure 1list is similar to cons, except that it
takes an arbitrary number of arguments and always builds
a proper list.

E.g., (1ist ’a ’b ’c) — (a b ¢)

29

More about lists

A list in dotted-pair notation:
(@abc) >(. (. (. O

1 1=> (define foo (a . (b . (c . ON))
;Value: foo

1 J=> (list? foo)
;Value: #t

1 1=> (pair? foo)
;Value: #t

Proper lists:
O, (a (b (c) d) e)

(cons ’a (b)) — (a b)
Dotted pairs (improper lists):
(cons ’a ’b) — (a . b)
(car ’(a . b)) — a
(cdr ’(a . b)) — Db
(cons ’a ’(b . ¢)) - (ab . c)

30

Other (Predicate) Procedures

Predicate procedures return #t or () (i.e., false).

= < > <= >= number comparison ops

Run-time type checking procedures:

— All return Boolean values: #t and ()
— (number? 5) evaluates to #t

— (zero? 0) evaluates to #t

— (symbol? ’sam) evaluates to #t

— (list? ’(a b)) evaluates to #t

— (pair? ’(a b)) evalutates to #t

— (null? ’()) evalutates to #t

31

Other Predicate Procedures

READ-EVAL-PRINT Loop

A few more examples....

e (number? ’sam) evaluates to ()

(null? ’(a)) evaluates to ()

(zero? (- 3 3)) evaluates to #t

(zero? ’(- 3 3)) = type error

(1ist? (+ 3 4)) evaluates to (O

(1ist? ’(+ 3 4)) evaluates to #t

(pair? ’(a .

c)) evaluates to #t

32

READ: Read input from user:
a procedure application

EVAL: Evaluate input:

(f argy argo ...argp)

1. evaluate £ to obtain a procedure

2. evaluate each arg; to obtain a value
3. apply procedure to argument values

PRINT: Print resulting value:
the result of the procedure application

33

READ-EVAL-PRINT Loop
Example

Quotes Inhibit Evaluation

1 J=> (cons ’a (cons ’b ’(c d)))
;Value 1: (a b c d)

1.

Read the procedure application
(cons ’a (cons ’b ’(c d)))

Evaluate cons to obtain a procedure
Evaluate ’a to obtain a itself

Evaluate (cons ’b ’(c d)):
(a) Evaluate cons to obtain a procedure
(b) Evaluate ’b to obtain b itself

(c) Evaluate ’(c d) to obtain (c d) itself

(d) Apply the cons procedure to b and (c d)
to obtain (b ¢ d)

5. Apply the cons procedure to a and (b c d)

to obtain (a b ¢ d)

6. Print the result of the application:

(abc d)

34

; ;5ame as before:
1 J=> (cons ’a (cons ’b ’(c 4)))
;Value 2: (a b c d)

; sNow quote the second argument:
1 1=> (cons ’a ’(cons ’b ’(c d)))
;Value 3: (a cons (quote b) (quote (c d)))

; ;Instead, un—quote the first argument:
1 1=> (cons a (cons ’b ’(c d)))
;Unbound variable: a

;To continue, call RESTART...

2 error> “C°C

11=>

35

Quotes vs. Eval

READ-EVAL-PRINT Loop

; ;oome things evaluate to themselves:

1 J=> (list 1 42 #t #f ())
;Value 4: (1 2 #t (O ()

; ;They can also be quoted:
1 1=> (list ’1 42 ’#t *#f > ()
;Value 5: (1 2 #t (O ()

Eval Activates Evaluation

1 1=>"°(+12)
;Value 6: (+ 1 2)

; ;Eval can be used to evaluate an expression

1]=> (eval ’(+ 1 2) ()
;Value 7: 3

Can also be used to define procedures.

READ: Read input from user:
a symbol definition

EVAL: Evaluate input:
store function definition

PRINT: Print resulting value:
the symbol defined

Example:

1 1=> (define (square x) (* x x))

;Value: square

Procedure Definition

Two syntaxes for definition:

1. (define (<fcn-name> <fcn-params>)
<expression>)
(define (square x)

(x x x))
(define (mean x y)

(/ (+xy) 2))

2. (define <fcn-name> <fcn-value>)

(define square
(lambda (n) (* n n)))

(define mean
(lambda (x y) (/ (+ x y) 2)))

Lambda procedure syntax enables the creation
of anonymous procedures. More on this later!
38

Conditional Execution: if

(if <condition> <resultl> <result2>)

1. Evaluate <condition>

2. If the result is a “true value” (i.e., any-
thing but () or #f), then evaluate and re-
turn <resulti>

3. Otherwise, evaluate and return <result2>

(define (abs-val x)
(if >=x0) x (- x)))

(define (rest-if-first e 1lst)
(if (eq? e (car 1lst)) (cdr 1st) ’()))

39

Conditional Execution: cond Conditional Execution: cond

(cond (<conditionl> <resultl>) (define (abs-val x)
(<condition2> <result2>) (cond ((>= x 0) x)
(else (- x))
(<conditionN> <resultN>))
(else <else-result>) ;optional else)
) ;clause

(define (rest-if-first e 1lst)
(cond ((null? 1st) ’(Q))
((eq? e (car 1st)) (cdr 1st))
(else *())

1. Evaluate conditions in order until obtaining
one that returns a true value

2. Evaluate and return the corresponding re-
sult

3. If none of the conditions returns a true)
value, evaluate and return <else-result>

40 41

Conditional vs. Boolean Conditional vs. Boolean

EXxpressions EXxpressions
Write a procedure that takes a parameter x and Now write atom? without using cond:
returns #t if x is an atom, and false otherwise.
Using cond: (define (atom? x)
(if (symbol? x) ’#t
(define (atom? x) (if (number? x) ’#t
(cond ((symbol? x) ’#t) (if (char? x) ’#t
((number? x) ’#t) (if (string? x) ’#t
((char? x) ’#t) (if (null? x) °#t O)
((string? x) ’#t))
((null? x) ’#t))
(else ()))
))
))

42 43

Better atom? procedure

Any list is a pair (dotted pair with CAR and
CDR), except the empty list (which is both list
and atom).

(define (atom? x)

(if (pair? x) () ’#t)

(define (atom? x)
(cond ((pair? x) ()
(else ’#t)

a4

