Functional Programming—
Illustrated in Scheme

References:

e Dybvig, (available online and in the library)
e Sebesta Chapter 15.2-15.6, 15.9, 15.10.

Lisp slides © D. Horton 200.
Scheme slides © S. Stevenson, D. Inkpen 2001.
Adapted for Scheme © E. Joanis 2000, 2002.
Modified and updated © S. Mcllraith 2004.
Additional slides use material taken from © G.
Baumagartner 2001.

Pure Functional Languages

Fundamental concept: application of (mathematical)
functions to values

1. Referential transparency: The value of a func-
tion application is independent of the contex t in
which it occurs (i.e., given the same parameters,
it always returns the same results). Or alterna-
tively, a language is referentially transparent if we
may replace one expression with another of equal
value anywhere in a program without changing the
meaning of the program. This is achieved by not
having side effects in programs, e.g.,

value of £(a,b,c) depends only on the values of

f, a, band c

It does not depend on the global state of com-

putation

= all vars in function must be parameters

Main advantage: facilitates reasoning about programs
and applying program transformations.

See http://en.wikipedia.org/wiki/Referential transparency

Scheme on CDF

Invoking: scheme
Exiting: (exit) or Ctrl-D
Loading filename.scm: (load ‘‘filename’’)

or
(load ‘‘filename.scm’’)

Tracing: (trace proc_name)

Transcript:
(transcript-on <my_trans>)
(transcript-off)
saves a transcript of a session to <my_trans>.

Debugger:
-start: (debug)
-help: 7
-go back (read-eval-print level): (restart 1)
or
Ctrl-C Ctrl-C
-quit: q

Pure Functional Languages (cont.)

2. The concept of assignment is not part of

functional programming

e no explicit assignment statements

e variables bound to values only through
the association of actual parameters to
formal parameters in function calls

e function calls have no side effects

e thus no need to consider global state

3. Control flow is governed by function calls
and conditional expressions
= no iteration
= recursion is widely used

Jumping right in

A Scheme procedure

(define increment
(lambda (n)
(+n 1)

or
(define (increment n)
(+ n 1)

A call to the procedure

(increment 21)

Pure Functional Languages (cont.)

4. All storage management is implicit
e needs garbage collection

5. Functions are First Class Values
e Can be returned as the value of an ex-
pression
e Can be passed as an argument
e Can be putin a data structure as a value

e Unnamed functions exist as values

The Spirit of Lisp-like Languages

We shall first define a class of symbolic ex-
pressions in terms of ordered pairs and lists.
Then we shall define five elementary functions
and predicstend build from them by com-
position, conditional expressions and recur-
sive definitions an extensive class of functions
of which we shall give a number of examples.
We shall then show how these functions can
themselves be expressed as symbolic ex-
pressian and we shall give a universal func-
tion apply that allows us to compute from the
expressions for a given function its value for
given arguments. Finally, we shall define some
functions with functions as arguments and
give some useful examples.

McCarthy, J, [1960]. Recursive functions of symbolic
expressions and their computation by machine, Part I.
Comm. ACM 3:4; quoted in Sethi.

A Functional Program

A program includes:
1. A set of function definitions

2. An expression to be evaluated

E.g. in Scheme:
1 1=> (define (abs-val x)
(if (>=x 0)
X

(- x)))

;Value: abs-val

1 1=> (abs-val (- 3 5))

;Value: 2

Jumping Back In
The MIT Scheme Interface

werewolf 1) scheme
Scheme Microcode Version ...

1]=>(+835 16 9)
;Value: 41

1 1=> (define increment (lambda (n) (+ n 1)))
;Value: increment

1 1=> (increment 21)
;Value: 22

1 1=> (load "incr")
;Loading "incr.scm" -- done
;Value: increment-list

1 1=> (increment-list (1 32 7))
;The object 1 is not applicable.
;To continue, call RESTART with an option number:

; (RESTART 2) => Specify a procedure to use in its place.

; (RESTART 1) => Return to read-eval-print level 1.

2 error> (restart 1)
;Abort!

1 1=> (increment-list ’(1 32 7))
;Value 1: (2 33 8) 9

A-Calculus (cont.)

Formal Syntax in BNF
<A-term> ::= <variable>
| A<variable> . <A-term>
| (<A-term> <A-term>)
<variable> ::= x | y | =z

Or more compactly

V | A.E | (E1 E2)
x |y | z |

Where V is an arbitrary variable and E is an
arbitrary A-expression. We call AV the head of
the A-expressions and E the body.

1]=> (trace increment-list)
;Unspecified return value

1 1=> (increment-list ’(1 32 7))

[Entering #[compound-procedure 2 increment-list]
Args: (1 32 7]
[Entering #[compound-procedure 2 increment-list]
Args: (32 7)1
[Entering #[compound-procedure 2 increment-list]
Args: (7)]
[Entering #[compound-procedure 2 increment-list]
Args: O]
[o
<== #[compound-procedure 2 increment-list]
Args: (]
[(e
<== #[compound-procedure 2 increment-list]
Args: (7)1
[(33 8)
<== #[compound-procedure 2 increment-list]
Args: (32 7)]
[(2 33 8
<== #[compound-procedure 2 increment-list]
Args: (1 32 7]
;Value 3: (2 33 8)

1 1=> (exit)
Kill Scheme (y or n)? Yes

Happy Happy Joy Joy. 10
werewolf 2J

Formal Roots: \-Calculus

A-Calculus: Functional Forms

A higher-order function (functional form):
e Takes functions as parameters
e Yields a function as a result
E.g.: Given

f(x) =x+ 2, g(x) = 3 * x
then,

h(x) = £(g(x)) and

h(x) = (3 * x) + 2
h(x) is called a higher-order function.

Types of Functional Forms:
Construction form: E.qg.,

g(x) = x *x, h(x) =2 *x, i(x) =x/ 2
[g,h,i] (4) = (16,8,2)

Apply-to-all form: E.g,
h(x) = x * x
y(h, (2,3,4)) = (4,9,16)

Defined by Alonzo Church, a logician, in
1930s as a computational theory of recur-
sive functions

A-calculus is equivalent in computational
power to Turing machines

Recall: what's a Turing machine?

Turing machines are abstract machines that
emphasize computation as a series of state
transitions driven by symbols on an input
tape (which leads naturally to an impera-
tive style of programming based on assign-
ment)

How is A-calculus different?

— X-calculus emphasizes typed expressions
and functions (which naturally leads to
a functional style of programming).

— No state transitions.

A-Calculus
Is it really Turing Complete?

Can we represent the class of Turing com-
putable functions?

Yes, we can represent:

e Boolean and conditional functions

e Numerical and arithmetic functions

e Data structures: ordered pairs, lists, etc.
e Recursion

But, doing so in A-calculus is tedious;

e Need syntactic sugar to simplify task,

e \-calculus more suitable as an abstract model
of a pregramming language rather than a prac-
tical programming language.

Both Turing machines and-calculus are ide-

alized, mathematical models of computatio.

15

A-Calculus (cont.)

A-calculus is a formal system for defining re-
cursive functions and their properties.

e Expressions are called A-expressions.

e Every A-expression denotes a function.

e A)l-expression consists of 3 kinds of terms:
Variables: z,y,z etc
V denoctes arbitrary variables
Abstractions: A\V.E
where V is some variable and E is an-
other A-term.
Applications: (E1 E2) where E1 and E2
are A-terms. Applications are sometimes
called combinations.

Scheme: A Functional
Programming Language

1958: Lisp

1975: Scheme (revised over the years)

1980: Common Lisp ("CL")

1980s: LiSD Machines (e.g, Symbolics, TI Explorer, etc.)

Lisp, Scheme and CL contrasted on following pages.

Some features of Scheme:

e denotational semantics based on the A-calculus.

I.e., the meaning of programming constructs in the language is de-

fined in terms of mathematical functions.

e lexical scoping

Le., all free variables in a A-expression are assigned values at the
time that the \is defined (i.e., evaluated and returned).

e arbitrary ctrl structures w/ continuations.

e functions as first-class values

e automatic garbage collection.

LISP

Functional language developed by John Mc-
Carthy in 1958.

Semantics based on A-Calculus

All functions operate on lists or atomic sym-
bols: (called “S-expressions”)

Only five basic functions: list functions cons,
car, cdr, equal, atom and one conditional
construct: cond

Uses dynamic scoping
Useful for list-processing applications

Programs and data have the same syntac-
tic form: S-expressions

Used in Artificial Intelligence

SCHEME

Developed in 1975 by G. Sussman and G.

Steele

A version of LISP

Consistent syntax, small language
Closer to initial semantics of LISP
Provides basic list processing tools
Allows functions to be first class objects
Provides support for lazy evaluation

lexical scoping of variables

COMMON LISP (CL)

Implementations of LISP did not completely
adhere to semantics

Semantics redefined to match implemen-
tations

COMMON LISP has become the standard

Committee-designed language (1980s) to
unify LISP variants

Many defined functions

Simple syntax, large language

