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TypingTyping

“A name for a set of values and some operations 
which can be performed on that set of values.”

“A collection of computational entities that share 
some common property.”
E.g.,   

reals
integers
strings
int → bool
(int → int) → bool

What constitutes a type is language dependent.
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Uses/MeritsUses/Merits

Program organization and documentation
• Separate types for separate concepts
• Indicate intended use of declared identifiers

Identify and prevent errors
• Compile-time or run-time checking can prevent 

meaningless computation such as
5 + true - Charlotte

Support optimization
• Compiler can generate better code if it knows 

what’s in each variable, e.g., short integers 
require fewer bits.

• Access record component by known offset
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Type errorsType errors

Definition
• A type error occurs when execution of program 

is not faithful to the intended semantics, i.e., the 
programmer’s intended interpretation.

Hardware errors
• function call y() where y is not a function
• may cause jump to instruction that does not 

contain a legal op code

Unintended semantics
• int_add(3, 4.5)
• not a hardware error but the bits representing 4.5 

will be interpreted as an integer



5

Type SafetyType Safety
& Type Checking& Type Checking

• A programming language is type safe if no 
program is allowed to violate its type 
distinctions. 
– Scheme, ML and Java are type safe.
– C and C++ are not.

• The process of verifying and enforcing the 
constraints of types is called type checking.

• Type checking can either occur at compile-
time (static) or at run-time (dynamic).
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CompileCompile-- vs. Runvs. Run--timetime

• Scheme: run-time (dynamic) type checking
(car x) checks first to make sure x is a list

• ML and Java: compile-time (static) type checking
f(x) must have f: A → B and x:A

Trade-off:
• Both prevent type errors
• Run-time checking slows down execution
• Compile-time checking restricts program flexibility

E.g., Scheme list elements can have diff. types, 
ML lists elements must have the same type

• Static typing can make programming more difficult, 
initially.  It’s harder to get things to compile, and 
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TypeType
CheckingChecking-- vs. Inferencevs. Inference

Standard Type Checking:
int f(int x) { return x+1;};
int g(int y)  {return f(y+1)*2;};
– Look at body of each function and use declared 

types to check for agreement.

Type Inference:
• Looks at code without type info and figures out 

what types could have been declared.
• ML is designed to make type inference 

tractable.
• A cool algorithm!
• Widely regarded as an important language 

innovation.
• ML type inference gives you some idea of how 

other static analysis algorithms might work.  It 
uses constraint satisfaction techniques.
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Type InferenceType Inference
This is type inference:

E.g.  A3 := B4 + 1;
Q: What type is A3 and B4 ?
A: Must be integer

E.g.  if test then …
Q: What type is test ?
A: Must be Boolean

Sound type system: a type system in which all types 
can always be inferred in any valid program.

ML’s Type Inference Algorithm (Mitchell):
1. Assign a type to the expression and each 

subexpression by using the known type of a 
symbol of a type variable.

2. Generate a set of constraints on types by using 
the parse tree of the expression.

3. Solve these constraints by using unification, which 
is a substitution-based algorithm for solving 
systems of equations.
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MLML

Developed at Edinburgh (early ’80s) as Meta-
Language for a program verification system
• Now a general purpose language
• There are two basic dialects of ML

– Standard ML (1991) & ML 2000
– Caml (including Objective Caml, or OCaml)

A pure functional language
• Based on typed lambda calculus
• Grew out of frustration with Lisp!
• Major programs can be written w/o variables

Widely accepted
• reasonable performance (claimed)
• can be compiled
• syntax not as arcane as LISP (nor as simple…)
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ML:  Main FeaturesML:  Main Features
Functional Language

HOFs, recursion strongly encouraged, etc.
Combination of Lisp and Algol features
Strong, static typing w/ type inference

Quite a fancy type system!
Polymorphism

a function can take arguments of various types
Abstract & recursive data types

supported through an elegant type system, 
the ability to construct new types, and 
constructs that restrict access to objects of a 
given type through a fixed set of ops defined for 
that type.

Pattern matching
Function as  a template

Exception handling
Allow you to handle errors/exception

Elaborate module system
Most highly developed of any language
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ML:  Tutorial ReviewML:  Tutorial Review
SML environment basics

Each ML expression has a type associated w/ it. 
• Interpreter builds the type expression 
• Cannot mix types in expressions 
• Must explicitly coerce/type-case 

e.g. real(2) + 3.0 : real

Data types (w/ operators): 
Basic: unit, bool, integer, real, string
Constructors :  list, tuple, array, record, function
operators infix, can be overloaded. 

Read-eval-print
• Compiler infers type before compiling & executing.
E.g., 

- (5+3)-2;
> val it = 6 : int
- If 5>3 then “Bob” else “Carol”;
>val it=“Bob” : string
- 5-4; 
> val it=false : bool

Assignment
val <constant-name> = <expression>;
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Patterns & DeclarationsPatterns & Declarations
Patterns can be used in place of variables

<pat> ::= <id>|<tuple>|<cons>|<record>|…

Value declaration (general form):
val <pat> = <exp>

E.g., 
- val myTuple = (“Jen”,”Brad”);
val myTuple = (“Jen","brad") : string * string

- val(x,y) = myTuple;
val x = “Jen" : string
val y = “Brad" : string

- val myList = [1,2,3,4];
val myList = [1,2,3,4] : int list

- val x::rest = myList;
val x = 1 : int
val rest = [2,3,4] : int list

Local declarations:
- let val x = 2+3 in x*4 end;
val it = 20 : int

ML
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DeclarationsDeclarations

ML has let too!

Local declarations:
- let val x = 2+3 in x*4 end;
val it = 20 : int

- let
val m=3            (* ; is optional *)
val n=m*m

in
m+n

end;
val it = 12 : int

ML
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Pattern MatchingPattern Matching
Pattern matching is powerful:
• Allows programmers to see the arguments
• No more heads and tails (cars/cdrs)

Tupple pattern matching
-val v=((2, "Test"),(3.2,#"A"));
val v = ((2,"Test"),(3.2,#"A")) : (int * string) * (real * char)

-val ((i,s),(r,c))=v;
val i = 2 : int
val s = "Test" : string
val r = 3.2 : real
val c = #"A" : char

-val (p1,p2)=v;val p1 = (2,"Test") : int * string
val p2 = (3.2,#"A") : real * char

-val (_,(r,_))=v;    (*_  (“don’t care”) matches anything!*)
val r = 3.2 : real

ML
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Pattern MatchingPattern Matching

Record pattern matching
-type stInfo={name:string, id:int, gpa:real};
type stInfo = {gpa:real, id:int, name:string}

-val st1:stInfo={name=“jen", id=123, gpa=4.0};
val st1 = {gpa=4.0,id=123,name="jen"} : stInfo

-val {name=N, gpa=G, id=_}=st1;   (* order doesn't matter! *)
val G = 4.0 : real
val N = “jen" : string

-val {gpa,id, name}=st1;      (* this is an abbreviation in ML *)
val gpa = 4.0 : real
val id = 123 : int
val name = “jen" : string

-val {name,...}=st1l;    (* to specify subset of fields *)
val name = “jen" : string

ML
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Like Scheme there are:
• Defined functions
• Anonymous functions
• Recursive functions
• Higher-order functions
• And you can pass functions as parameters, and return 

them as values.

Unlike Scheme, 
• we call these things “functions” not “procedures”

f: A → B means
for every x A,

some element y=f(x) B
f(x) = run forever

terminate by raising an exception

A function maps a type to another one: accepts only 
one argument.

What if we need multiple arguments?

FunctionsFunctions
ML
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Function DeclarationsFunction Declarations

Function Declaration
Single clause definition

fun <fname> (<pat>) =<exp>;
Function arguments (patterns) don’t always need 

parentheses, but it doesn’t hurt to use them

Examples:
- fun fahrToCelsius t  = (t -32) * 5 div 9;
val fahrToCelsius = fn : int -> int

- fun foo L = (1 + hd L) :: (tl L);
val foo = fn : int list -> int list

- fun quotrem (x,y) = ( ( x div y), (x mod y));  
val quotrem = fn : int * int int * int

ML
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Function DeclarationsFunction Declarations
Multiple-clause definition

fun <fname> (<pat1>) = <exp1>
| <fname> (<pat2>) = <exp2>
| …
| <fname> (<patn>) = <expn>

Lazy:  The first pattern that matches the actual 
parameter will be chosen.

Examples:
-fun sum (x,y)= x+y;
val sum = fn: int*int -> int

-sum (2,3);
val it = 5 : int

-fun len (nil) = 0          (*nil or [ ]  Also we can drop ()*)
| len (h::rest) = 1+len(rest); (* () is necessary!*)

val len= fn: 'a list -> int

-len ([5]);
val it = 1: int
-len ["Alice", "John"];
val it = 2: int

ML
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Function DeclarationsFunction Declarations
Watch out!

- val z=4;
val z = 4 : int

-fun sumz (x,y)= x+y+z;
val sumz = fn: int*int -> int

-sumz (2,3);
val it = 9 : int

- val z=7;
val z = 7 : int

-sumz (2,3);
val it = 9 : int

No variable can occur twice in a pattern
- fun eq(x,x)=true

| eq(x,y)=false;
Error: duplicate variable in pattern(s)

If the pattern doesn’t exhaust all possible values,
we get a warning.

ML
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Function DeclarationsFunction Declarations
Example:
- fun listsum L = if (null L) then 0 

else (hd L) + listsum (tl L);
val listsum = fn : int list -> int

- listsum [1,2,3];
val it = 6 : int

Better:
- fun listsum [] = 0

| listsum L = (hd L) + listsum (tl L);

Best
- fun listsum [] = 0
| listsum (h::t) = h + listsum t;

ML
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Anonymous FunctionsAnonymous Functions
fn <pat> => <expr>
This is just like a Scheme lambda expression

(lambda (<pat>) (exp)) 

Examples:
-(fn(x,y)=> x+y) (2,3);
val it = 5 : int

-val mysum=  fn (x,y)=> x+y;
val mysum = fn : int * int -> int

-mysum(2,3)
val it = 5 : int

The following declarations are identical:
- fun f(n) = 2*n;
val f = fn : int -> int

- val f = fn n => 2*n; 
val f = fn : int -> int

ML



22

Anonymous FunctionsAnonymous Functions
What is this doing?

- fun foo (m, n) =
if m > n then [ ] else m :: foo(m+1, n);

val foo = fn : int * int -> int list

- foo(1,6);

ML
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Recursive FunctionsRecursive Functions
Examples:

- fun append(nil, ys) = ys
| append(x::xs,ys) = x :: append(xs,ys);

val append = fn : 'a list * 'a list -> 'a list

- fun reverse nil = nil
| reverse(x::xs) = append((reverse xs),[x]);

val reverse = fn : 'a list -> 'a list

There is a more efficient reverse….

ML
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Mutual RecursionMutual Recursion
The following is wrong:
fun even 0 = true

| even x = odd (x-1);  (*wrong: odd not defined*)

The following is correct, using mutual recursion:
fun even 0 = true
| even x = odd (x-1)

and odd 0 = false
| odd x = even (x-1);

ML
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Important IssuesImportant Issues
1. Function application is left-associative. 

Use brackets as necessary.
abs square x + y * abs z;  means

(abs square) x + (y * (abs z))
Our error:  operator and operand don't agree

2. The combination of tuples, functions, infix ops, type 
constructors can be syntactically tricky when 
defining/calling functions!

Eg.  length 2::[1,3] is wrong: it means
(length 2) :: [1,3].
Correct formulation?: 

Eg.
fun f1 nil=0 | 

f1 h::t= 1+f1 t;
Error: infix operator "::" used without "op" in fun dec
Error: clauses don't all have same no. of patterns

Correct formulations?:

ML
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Important Issues Important Issues (cont.)(cont.)

The syntax becomes more complex when considering 
the following short notation:

In ML 
fun sum x y=x+y; 

is short for
fun sum x= (fn y=>x+y);

So, its type is:
fn : int -> (int -> int)

Similarly,
fun sum3 x y z = x+y+z

is short for:
fun sum3 x =

(fn y => 
(fn z => x+y+z));

So it’s type is:
fn : int -> int -> int -> int

ML
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Exception HandlingException Handling
Recall that many functions are partial – they are 
only defined for a subset of the function’s domain 
type.  Other values in the domain type may be 
treated as exceptions.  (E.g., division by zero)

Exceptions are a control construct.  They provide a 
structured form of jump to exit a construct such 
as a function invocation or a block.

Terminate part of computation: 
• Jump out of construct
• Pass data as part of jump
• Return to most recent site set up to handle 
exception
• Unnecessary activation records may be 
deallocated

(May need to free heap space, other resources)

Often used for unusual or exceptional condition, but 
not necessarily

ML
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ML ExampleML Example

exception Determinant;  (* declare exception name *)
fun invert (M) =      (* function to invert matrix *)

…
if …

then raise Determinant    (* exit if Det=0 *)
else …

end;
...
invert (myMatrix) handle Determinant => … ;

ML

Value for expression if determinant of myMatrix is 0
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Exception HandlingException Handling
Many languages have exception mechanisms:

Ada, C++, Java, ML, PL/1, etc.

Why do we need exceptions in a strongly typed 
language?
- only checks types of parameters, not their values
- In languages w/o exception handling, when an 
exception occurs, control goes to the OS and the 
program is terminated, or special code must be 
written to handle exceptions (e.g., pass special 
parameter or use return value of procedure to 
indicate status of program, etc.)
- In contrast, with exception handling, programs 
can “fix the problem” and continue, if desirable.

Some uses: (see examples in Mitchell 8.2)
error handling (when no reasoable value can be 

returned
- efficiency

Two types of exceptions in ML:
- Built-in exceptions
- User-defined exceptions

ML
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BuiltBuilt--In ExceptionsIn Exceptions
Classical example: division by 0.
- 5 div 3; (* type of function div is int *)
val it = 1 : int

- 5 div 0; (* an exception is raised *)
uncaught exception divide by zero
raised at: <file stdIn>

Other examples of built-in exceptions:
- hd([3,5,9]);
val it = 3 : int

- hd(nil: int list);
uncaught exception Empty
raised at: boot/list.sml:36.38-36.43

These both raise exceptions and stop, but exceptions 
can also be handled, a value assigned and computation 
continued.

ML
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UserUser--Defined ExceptionsDefined Exceptions
ML

1. Declare an Exception to establish exception handler
exception 〈exception-nm〉 of 〈type-expression〉

gives name of exception and (optionally) type of data 
passed when raised

2. Raise Exception
raise 〈exception-nm〉 〈parameters〉

raises an exception and passes data to handler

Example
- exception NegArg of int;    (* declare an exception *)
exception NegArg of int

- fun fact N = if N=0 then 1
=              else if N>0 then N*fact(N-1)
=                   else raise NegArg(N);  (* raise excptn *)
val fact = fn : int -> int

- fact(5);
val it = 120 : int

- fact(~5);
uncaught exception NegArg
raised at: stdIn:20.30-20.39
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UserUser--Defined Defined ExceptExcept’’nsns (cont.)(cont.)

ML

3. Exception Handling
<expression> 
handle <exception1> => <expression1>

|   <exception2> => <expression2>                       
…

|  <exceptionn> => <expressionn>

• If no exceptions are raised then return the value of 
<expression>
• If <exceptioni> is raised, then return the value of 
<expressioni>

(See more general form + explanation in Mitchell)
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Exception HandlingException Handling
ML

Example: N! / (M! (N-M)!)

- fun comb (N,M) =
=    if N < 0 then raise Negative(N)
=    else if M < 0 then raise Negative(M)
=           else if M > N then raise TooBig(M)
=                   else
=                       fact(N) div (fact(M) * fact(N-M));
val comb = fn : int * int -> int

- fun mycomb (N,M) =  comb (N,M)
=           handle Negative(X) => ~1
=                |      TooBig(M) => 0;
val mycomb = fn : int * int -> int

- mycomb(12,5);
val it = 792 : int

- mycomb(~12,5);
val it = ~1 : int

- mycomb (5,12);
val it = 0 : int
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Exceptions & ScopingExceptions & Scoping
ML

Exceptions are handled according to dynamic 
scoping.  Otherwise ML uses static scoping.
(More on this in a later unit of the course, but here is an 
illustrative example)

Example: 

<f-expn>
handle
<exci>=> <expi>

<g-expn>
handle
<exci>=> <expi>

…
raise <exci>
…

gf h

- exception e1 and e3 and e3;
- fun h(1) = raise e1

|   h(2) = raise e2
|   h(3) = raise e3
|   h(_) = "ok";

- fun g(N) = h(N)
handle e2 => "error g2"
|         e3 => "error g3";

- fun f(N) = g(N)
handle e1 => "error f1“
|         e2 => "error f2";

(edited out the interpreter responses)

- f(4);
val it = "ok" : string
- f(3);
val it = "error g3" : string
- f(2);
val it = "error g2" : string
- f(1);
val it = "error f1" : string
- f(0);
val it = "ok" : string
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Dynamic Scoping of Dynamic Scoping of 
HandlersHandlers

ML

General dynamic scoping rule:
•Jump to most recently established handler on 
run-time stack

Dynamic scoping is not an accident:
•User knows how to handler error
•Author of library function does not 
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Typing of ExceptionsTyping of Exceptions

Typing of raise 〈exception〉
• Recall definition of typing

– Expression e has type t if normal termination of 
e 

produces value of type t
• Raising exception is not normal termination

– Example:  1 + raise X

Typing of handle 〈exception〉 => 〈value〉
• Converts exception to normal termination
• Need type agreement
• Examples

– 1 + ((raise X) handle X => e)  
*** Type of e must be int

– 1 + (e1 handle X => e2)           
*** Type of e1, e2 must be int

ML
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