
1

Acknowledgement:
The material in these notes is derived from a variety
of sources, including:
Elements of ML Programming (Ullman),
Concepts in Programming Languages (Mitchell)
and the notes of Wael Aboelsaddat, Tony Bonner,
Eric Joanis, Gerald Penn, and Suzanne Stevenson.

Typing and MLTyping and ML

CSC324
Fall 2005
Sheila McIlraith

2

TypingTyping

“A name for a set of values and some operations
which can be performed on that set of values.”

“A collection of computational entities that share
some common property.”
E.g.,

reals
integers
strings
int → bool
(int → int) → bool

What constitutes a type is language dependent.

3

Uses/MeritsUses/Merits

Program organization and documentation
• Separate types for separate concepts
• Indicate intended use of declared identifiers

Identify and prevent errors
• Compile-time or run-time checking can prevent

meaningless computation such as
5 + true - Charlotte

Support optimization
• Compiler can generate better code if it knows

what’s in each variable, e.g., short integers
require fewer bits.

• Access record component by known offset

4

Type errorsType errors

Definition
• A type error occurs when execution of program

is not faithful to the intended semantics, i.e., the
programmer’s intended interpretation.

Hardware errors
• function call y() where y is not a function
• may cause jump to instruction that does not

contain a legal op code

Unintended semantics
• int_add(3, 4.5)
• not a hardware error but the bits representing 4.5

will be interpreted as an integer

5

Type SafetyType Safety
& Type Checking& Type Checking

• A programming language is type safe if no
program is allowed to violate its type
distinctions.
– Scheme, ML and Java are type safe.
– C and C++ are not.

• The process of verifying and enforcing the
constraints of types is called type checking.

• Type checking can either occur at compile-
time (static) or at run-time (dynamic).

6

CompileCompile-- vs. Runvs. Run--timetime

• Scheme: run-time (dynamic) type checking
(car x) checks first to make sure x is a list

• ML and Java: compile-time (static) type checking
f(x) must have f: A → B and x:A

Trade-off:
• Both prevent type errors
• Run-time checking slows down execution
• Compile-time checking restricts program flexibility

E.g., Scheme list elements can have diff. types,
ML lists elements must have the same type

• Static typing can make programming more difficult,
initially. It’s harder to get things to compile, and

7

TypeType
CheckingChecking-- vs. Inferencevs. Inference

Standard Type Checking:
int f(int x) { return x+1;};
int g(int y) {return f(y+1)*2;};
– Look at body of each function and use declared

types to check for agreement.

Type Inference:
• Looks at code without type info and figures out

what types could have been declared.
• ML is designed to make type inference

tractable.
• A cool algorithm!
• Widely regarded as an important language

innovation.
• ML type inference gives you some idea of how

other static analysis algorithms might work. It
uses constraint satisfaction techniques.

8

Type InferenceType Inference
This is type inference:

E.g. A3 := B4 + 1;
Q: What type is A3 and B4 ?
A: Must be integer

E.g. if test then …
Q: What type is test ?
A: Must be Boolean

Sound type system: a type system in which all types
can always be inferred in any valid program.

ML’s Type Inference Algorithm (Mitchell):
1. Assign a type to the expression and each

subexpression by using the known type of a
symbol of a type variable.

2. Generate a set of constraints on types by using
the parse tree of the expression.

3. Solve these constraints by using unification, which
is a substitution-based algorithm for solving
systems of equations.

9

MLML

Developed at Edinburgh (early ’80s) as Meta-
Language for a program verification system
• Now a general purpose language
• There are two basic dialects of ML

– Standard ML (1991) & ML 2000
– Caml (including Objective Caml, or OCaml)

A pure functional language
• Based on typed lambda calculus
• Grew out of frustration with Lisp!
• Major programs can be written w/o variables

Widely accepted
• reasonable performance (claimed)
• can be compiled
• syntax not as arcane as LISP (nor as simple…)

10

ML: Main FeaturesML: Main Features
Functional Language

HOFs, recursion strongly encouraged, etc.
Combination of Lisp and Algol features
Strong, static typing w/ type inference

Quite a fancy type system!
Polymorphism

a function can take arguments of various types
Abstract & recursive data types

supported through an elegant type system,
the ability to construct new types, and
constructs that restrict access to objects of a
given type through a fixed set of ops defined for
that type.

Pattern matching
Function as a template

Exception handling
Allow you to handle errors/exception

Elaborate module system
Most highly developed of any language

11

ML: Tutorial ReviewML: Tutorial Review
SML environment basics

Each ML expression has a type associated w/ it.
• Interpreter builds the type expression
• Cannot mix types in expressions
• Must explicitly coerce/type-case

e.g. real(2) + 3.0 : real

Data types (w/ operators):
Basic: unit, bool, integer, real, string
Constructors : list, tuple, array, record, function
operators infix, can be overloaded.

Read-eval-print
• Compiler infers type before compiling & executing.
E.g.,

- (5+3)-2;
> val it = 6 : int
- If 5>3 then “Bob” else “Carol”;
>val it=“Bob” : string
- 5-4;
> val it=false : bool

Assignment
val <constant-name> = <expression>;

12

Patterns & DeclarationsPatterns & Declarations
Patterns can be used in place of variables

<pat> ::= <id>|<tuple>|<cons>|<record>|…

Value declaration (general form):
val <pat> = <exp>

E.g.,
- val myTuple = (“Jen”,”Brad”);
val myTuple = (“Jen","brad") : string * string

- val(x,y) = myTuple;
val x = “Jen" : string
val y = “Brad" : string

- val myList = [1,2,3,4];
val myList = [1,2,3,4] : int list

- val x::rest = myList;
val x = 1 : int
val rest = [2,3,4] : int list

Local declarations:
- let val x = 2+3 in x*4 end;
val it = 20 : int

ML

13

DeclarationsDeclarations

ML has let too!

Local declarations:
- let val x = 2+3 in x*4 end;
val it = 20 : int

- let
val m=3 (* ; is optional *)
val n=m*m

in
m+n

end;
val it = 12 : int

ML

14

Pattern MatchingPattern Matching
Pattern matching is powerful:
• Allows programmers to see the arguments
• No more heads and tails (cars/cdrs)

Tupple pattern matching
-val v=((2, "Test"),(3.2,#"A"));
val v = ((2,"Test"),(3.2,#"A")) : (int * string) * (real * char)

-val ((i,s),(r,c))=v;
val i = 2 : int
val s = "Test" : string
val r = 3.2 : real
val c = #"A" : char

-val (p1,p2)=v;val p1 = (2,"Test") : int * string
val p2 = (3.2,#"A") : real * char

-val (_,(r,_))=v; (*_ (“don’t care”) matches anything!*)
val r = 3.2 : real

ML

15

Pattern MatchingPattern Matching

Record pattern matching
-type stInfo={name:string, id:int, gpa:real};
type stInfo = {gpa:real, id:int, name:string}

-val st1:stInfo={name=“jen", id=123, gpa=4.0};
val st1 = {gpa=4.0,id=123,name="jen"} : stInfo

-val {name=N, gpa=G, id=_}=st1; (* order doesn't matter! *)
val G = 4.0 : real
val N = “jen" : string

-val {gpa,id, name}=st1; (* this is an abbreviation in ML *)
val gpa = 4.0 : real
val id = 123 : int
val name = “jen" : string

-val {name,...}=st1l; (* to specify subset of fields *)
val name = “jen" : string

ML

16

Like Scheme there are:
• Defined functions
• Anonymous functions
• Recursive functions
• Higher-order functions
• And you can pass functions as parameters, and return

them as values.

Unlike Scheme,
• we call these things “functions” not “procedures”

f: A → B means
for every x A,

some element y=f(x) B
f(x) = run forever

terminate by raising an exception

A function maps a type to another one: accepts only
one argument.

What if we need multiple arguments?

FunctionsFunctions
ML

17

Function DeclarationsFunction Declarations

Function Declaration
Single clause definition

fun <fname> (<pat>) =<exp>;
Function arguments (patterns) don’t always need

parentheses, but it doesn’t hurt to use them

Examples:
- fun fahrToCelsius t = (t -32) * 5 div 9;
val fahrToCelsius = fn : int -> int

- fun foo L = (1 + hd L) :: (tl L);
val foo = fn : int list -> int list

- fun quotrem (x,y) = ((x div y), (x mod y));
val quotrem = fn : int * int int * int

ML

18

Function DeclarationsFunction Declarations
Multiple-clause definition

fun <fname> (<pat1>) = <exp1>
| <fname> (<pat2>) = <exp2>
| …
| <fname> (<patn>) = <expn>

Lazy: The first pattern that matches the actual
parameter will be chosen.

Examples:
-fun sum (x,y)= x+y;
val sum = fn: int*int -> int

-sum (2,3);
val it = 5 : int

-fun len (nil) = 0 (*nil or [] Also we can drop ()*)
| len (h::rest) = 1+len(rest); (* () is necessary!*)

val len= fn: 'a list -> int

-len ([5]);
val it = 1: int
-len ["Alice", "John"];
val it = 2: int

ML

19

Function DeclarationsFunction Declarations
Watch out!

- val z=4;
val z = 4 : int

-fun sumz (x,y)= x+y+z;
val sumz = fn: int*int -> int

-sumz (2,3);
val it = 9 : int

- val z=7;
val z = 7 : int

-sumz (2,3);
val it = 9 : int

No variable can occur twice in a pattern
- fun eq(x,x)=true

| eq(x,y)=false;
Error: duplicate variable in pattern(s)

If the pattern doesn’t exhaust all possible values,
we get a warning.

ML

20

Function DeclarationsFunction Declarations
Example:
- fun listsum L = if (null L) then 0

else (hd L) + listsum (tl L);
val listsum = fn : int list -> int

- listsum [1,2,3];
val it = 6 : int

Better:
- fun listsum [] = 0

| listsum L = (hd L) + listsum (tl L);

Best
- fun listsum [] = 0
| listsum (h::t) = h + listsum t;

ML

21

Anonymous FunctionsAnonymous Functions
fn <pat> => <expr>
This is just like a Scheme lambda expression

(lambda (<pat>) (exp))

Examples:
-(fn(x,y)=> x+y) (2,3);
val it = 5 : int

-val mysum= fn (x,y)=> x+y;
val mysum = fn : int * int -> int

-mysum(2,3)
val it = 5 : int

The following declarations are identical:
- fun f(n) = 2*n;
val f = fn : int -> int

- val f = fn n => 2*n;
val f = fn : int -> int

ML

22

Anonymous FunctionsAnonymous Functions
What is this doing?

- fun foo (m, n) =
if m > n then [] else m :: foo(m+1, n);

val foo = fn : int * int -> int list

- foo(1,6);

ML

23

Recursive FunctionsRecursive Functions
Examples:

- fun append(nil, ys) = ys
| append(x::xs,ys) = x :: append(xs,ys);

val append = fn : 'a list * 'a list -> 'a list

- fun reverse nil = nil
| reverse(x::xs) = append((reverse xs),[x]);

val reverse = fn : 'a list -> 'a list

There is a more efficient reverse….

ML

24

Mutual RecursionMutual Recursion
The following is wrong:
fun even 0 = true

| even x = odd (x-1); (*wrong: odd not defined*)

The following is correct, using mutual recursion:
fun even 0 = true
| even x = odd (x-1)

and odd 0 = false
| odd x = even (x-1);

ML

25

Important IssuesImportant Issues
1. Function application is left-associative.

Use brackets as necessary.
abs square x + y * abs z; means

(abs square) x + (y * (abs z))
Our error: operator and operand don't agree

2. The combination of tuples, functions, infix ops, type
constructors can be syntactically tricky when
defining/calling functions!

Eg. length 2::[1,3] is wrong: it means
(length 2) :: [1,3].
Correct formulation?:

Eg.
fun f1 nil=0 |

f1 h::t= 1+f1 t;
Error: infix operator "::" used without "op" in fun dec
Error: clauses don't all have same no. of patterns

Correct formulations?:

ML

26

Important Issues Important Issues (cont.)(cont.)

The syntax becomes more complex when considering
the following short notation:

In ML
fun sum x y=x+y;

is short for
fun sum x= (fn y=>x+y);

So, its type is:
fn : int -> (int -> int)

Similarly,
fun sum3 x y z = x+y+z

is short for:
fun sum3 x =

(fn y =>
(fn z => x+y+z));

So it’s type is:
fn : int -> int -> int -> int

ML

27

Exception HandlingException Handling
Recall that many functions are partial – they are
only defined for a subset of the function’s domain
type. Other values in the domain type may be
treated as exceptions. (E.g., division by zero)

Exceptions are a control construct. They provide a
structured form of jump to exit a construct such
as a function invocation or a block.

Terminate part of computation:
• Jump out of construct
• Pass data as part of jump
• Return to most recent site set up to handle
exception
• Unnecessary activation records may be
deallocated

(May need to free heap space, other resources)

Often used for unusual or exceptional condition, but
not necessarily

ML

28

ML ExampleML Example

exception Determinant; (* declare exception name *)
fun invert (M) = (* function to invert matrix *)

…
if …

then raise Determinant (* exit if Det=0 *)
else …

end;
...
invert (myMatrix) handle Determinant => … ;

ML

Value for expression if determinant of myMatrix is 0

29

Exception HandlingException Handling
Many languages have exception mechanisms:

Ada, C++, Java, ML, PL/1, etc.

Why do we need exceptions in a strongly typed
language?
- only checks types of parameters, not their values
- In languages w/o exception handling, when an
exception occurs, control goes to the OS and the
program is terminated, or special code must be
written to handle exceptions (e.g., pass special
parameter or use return value of procedure to
indicate status of program, etc.)
- In contrast, with exception handling, programs
can “fix the problem” and continue, if desirable.

Some uses: (see examples in Mitchell 8.2)
error handling (when no reasoable value can be

returned
- efficiency

Two types of exceptions in ML:
- Built-in exceptions
- User-defined exceptions

ML

30

BuiltBuilt--In ExceptionsIn Exceptions
Classical example: division by 0.
- 5 div 3; (* type of function div is int *)
val it = 1 : int

- 5 div 0; (* an exception is raised *)
uncaught exception divide by zero
raised at: <file stdIn>

Other examples of built-in exceptions:
- hd([3,5,9]);
val it = 3 : int

- hd(nil: int list);
uncaught exception Empty
raised at: boot/list.sml:36.38-36.43

These both raise exceptions and stop, but exceptions
can also be handled, a value assigned and computation
continued.

ML

31

UserUser--Defined ExceptionsDefined Exceptions
ML

1. Declare an Exception to establish exception handler
exception 〈exception-nm〉 of 〈type-expression〉

gives name of exception and (optionally) type of data
passed when raised

2. Raise Exception
raise 〈exception-nm〉 〈parameters〉

raises an exception and passes data to handler

Example
- exception NegArg of int; (* declare an exception *)
exception NegArg of int

- fun fact N = if N=0 then 1
= else if N>0 then N*fact(N-1)
= else raise NegArg(N); (* raise excptn *)
val fact = fn : int -> int

- fact(5);
val it = 120 : int

- fact(~5);
uncaught exception NegArg
raised at: stdIn:20.30-20.39

32

UserUser--Defined Defined ExceptExcept’’nsns (cont.)(cont.)

ML

3. Exception Handling
<expression>
handle <exception1> => <expression1>

| <exception2> => <expression2>
…

| <exceptionn> => <expressionn>

• If no exceptions are raised then return the value of
<expression>
• If <exceptioni> is raised, then return the value of
<expressioni>

(See more general form + explanation in Mitchell)

33

Exception HandlingException Handling
ML

Example: N! / (M! (N-M)!)

- fun comb (N,M) =
= if N < 0 then raise Negative(N)
= else if M < 0 then raise Negative(M)
= else if M > N then raise TooBig(M)
= else
= fact(N) div (fact(M) * fact(N-M));
val comb = fn : int * int -> int

- fun mycomb (N,M) = comb (N,M)
= handle Negative(X) => ~1
= | TooBig(M) => 0;
val mycomb = fn : int * int -> int

- mycomb(12,5);
val it = 792 : int

- mycomb(~12,5);
val it = ~1 : int

- mycomb (5,12);
val it = 0 : int

34

Exceptions & ScopingExceptions & Scoping
ML

Exceptions are handled according to dynamic
scoping. Otherwise ML uses static scoping.
(More on this in a later unit of the course, but here is an
illustrative example)

Example:

<f-expn>
handle
<exci>=> <expi>

<g-expn>
handle
<exci>=> <expi>

…
raise <exci>
…

gf h

- exception e1 and e3 and e3;
- fun h(1) = raise e1

| h(2) = raise e2
| h(3) = raise e3
| h(_) = "ok";

- fun g(N) = h(N)
handle e2 => "error g2"
| e3 => "error g3";

- fun f(N) = g(N)
handle e1 => "error f1“
| e2 => "error f2";

(edited out the interpreter responses)

- f(4);
val it = "ok" : string
- f(3);
val it = "error g3" : string
- f(2);
val it = "error g2" : string
- f(1);
val it = "error f1" : string
- f(0);
val it = "ok" : string

35

Dynamic Scoping of Dynamic Scoping of
HandlersHandlers

ML

General dynamic scoping rule:
•Jump to most recently established handler on
run-time stack

Dynamic scoping is not an accident:
•User knows how to handler error
•Author of library function does not

36

Typing of ExceptionsTyping of Exceptions

Typing of raise 〈exception〉
• Recall definition of typing

– Expression e has type t if normal termination of
e

produces value of type t
• Raising exception is not normal termination

– Example: 1 + raise X

Typing of handle 〈exception〉 => 〈value〉
• Converts exception to normal termination
• Need type agreement
• Examples

– 1 + ((raise X) handle X => e)
*** Type of e must be int

– 1 + (e1 handle X => e2)
*** Type of e1, e2 must be int

ML

	Typing
	Uses/Merits
	Type errors
	Type Safety�& Type Checking
	Compile- vs. Run-time
	Type�Checking- vs. Inference
	Type Inference
	ML
	ML: Main Features
	ML: Tutorial Review
	Patterns & Declarations
	Declarations
	Pattern Matching
	Pattern Matching
	Functions
	Function Declarations
	Function Declarations
	Function Declarations
	Function Declarations
	Anonymous Functions
	Anonymous Functions
	Recursive Functions
	Mutual Recursion
	Important Issues
	Important Issues (cont.)
	Exception Handling
	ML Example
	Exception Handling
	Built-In Exceptions
	User-Defined Exceptions
	User-Defined Except’ns (cont.)
	Exception Handling
	Exceptions & Scoping
	Dynamic Scoping of Handlers
	Typing of Exceptions�

