Syntax of Programming
Languages (cont’'d)

(©Diane Horton 2000, Suzanne Stevenson 2001.
Modified and put together by Eric Joanis 2002.
Further modified by Sheila Mcllraith 2004.

28
In a programming language
Example:

<stmt> --> <assnt-stmt> | <loop-stmt> | <if-stmt>

<if-stmt> --> if <boolean-expr> then <stmt>
| if <boolean-expr> then <stmt> else <stmt>

Example sentence:

if (x odd) then
if (x == 1) then
print "bleep";
else

print "boop";

Exercise: Draw the two parse trees.
30

Syntactic Ambiguity
In English

Syntactically ambiguous sentences of English:
e ‘I saw the dog with the binoculars.”

e “The friends you praise sometimes deserve
it.”

e ‘“He seemed nice to her.”

Other kinds of ambiguity in English:

Aside: We can often “disambiguate” ambigu-
ous sentences. Question: How?

But we can be wrong.
Example: “I put the box on the table

29

Definition: A grammar is ambiguous iff it
generates a sentence for which there are two
or more distinct parse trees

To prove that a grammar is ambiguous, give a
string and two parse trees for it.

A sentence is ambiguous with respect to a
grammar iff that grammar generates two or
more distinct parse trees for the sentence.

Note that having two distinct derivations does
not make a sentence ambiguous. A derivation
corresponds to a traversal through a parse tree,
and one can traverse a single tree in many or-
ders.

31

Example Want: When specifying a programming lan-
guage, we want the grammar to be completely

Grammar: if statement two slides ago. unambiguous.
Sentence: Research question: Is there a procedure one
if (x odd) then can follow to determine whether or not a given

5 n n. . .
print "bleep”; grammar is ambiguous?

One parse tree:

Two derivations:

32 33
Notation and Terminology Changing the language to include
delimiters

We say that L(G) is the language generated
by grammar G. Algol 68 if-statement grammar:
So G is ambiguous if L(G) contains a sentence <stmt> --> <assnt-stmt> | <loop-stmt> | <if-stmt>
which has more than one parse tree, or more <if-stmt> --> if <boolean-expr> then <stmt> fi

. . . | if <boolean-expr> then <stmt>
than one leftmost (or canonical) derivation. else <stmt>

fi

Dealing with ambiguity

We have two strategies:

1. Change the language to include delimiters

2. Change the grammar to impose associa-
tivity and precedence

34 35

Example: A CFG for Arithmetic

EXxpressions

Grammar 1:

<expn> --> <expn> + <expn>
<expn> - <expn>
<expn> * <expn>
<expn> / <expn>
<expn> ~ <expn>
<identifier> |
<literal>

Example: parse 8 - 3 * 2

Changing the grammar to impose

precedence

Grammar 4:

<expn> -->

36

38

Changing the language to include

delimiters

Grammar 2:

<expn> --> (<expn>) - (<expn>) |
(<expn>) * (<expn>) |

<identifier> |
<literal>

(8)-((3)%(2)) € L(G)
((8)-(3))*(2) € L(G)
8 -3x2¢L(G)

Grammar 3:

<expn> --> <expn> - <expn>
<expn> * <expn>
<identifier> |
<literal> |
(<expr>)

Accepts all expressions, but still ambiguous!

37

Grouping in parse tree now reflects

precedence

Example: parse 8 - 3 * 2

39

Precedence

e Low Precedence:
Addition + and Subtraction -

e Medium Precedence:
Multiplication * and Division /

e Higher Precedence:
Exponentiation -

e Highest Precedence:
Parenthesized expressions (<expr>)

= Ordered lowest to highest in grammar.

Approach: Introduce a non-terminal for every
precedence level.
40

Associativity (cont.)

Examples:

e \We want multiplication to be left-associative,
SO we wrote:

<term> -> <term> ¥ <factor>

e We want exponentiation to be right-associative,
SO might write:

<expo> -> <number> ** <expo> | <number>

42

Associativity

e Deals with operators of same precedence

Implicit grouping or parenthesizing

e Left associative: *, /, +, -

Right associative: -

Approach: For left-associative operators, put
the recursive term before the nonrecursive term
in a production rule. For right-associative op-
erators, put it after.

41

Dealing with Ambiguity

1. Can’'t always remove an ambiguity from a
grammar by restructuring productions.

2. When specifying a programming language,
we want the grammar to be completely un-
ambiguous.

3. An inherently ambiguous language does not
pOsSsess an unambiguous grammar.

4. There is no algorithm that can examine an
arbitrary context-free grammar and tell if
it is ambiguous, i.e., detecting ambiguity
in context-free grammars is an undecidable
problem.

43

An Inherently Ambiguous
Language

Suppose we want to generate the following lan-
guage:

L= {aWc"|ijk>1,i=jorj=k}

Grammar:

44

Limitations of CFGs

CFGs are not powerful enough to describe some
languages.

Example:

e The language consisting of strings with one
or more a's followed by the same number
of b’'s then the same number of c’s.

Le., {a'bict |i>1}.

o { a™cC™d" | m,n>1 }.

Research question: Exactly what things can
and cannot be expressed with a CFG?

Research question: Can we write an algo-
rithm which examines an arbitrary CFG and
tells if it is ambiguous or not? — Undecidable!

Research question: Is there an algorithm that
can examine two arbitrary CFGs and determine
if they generate the same language? — Unde-
cidable!

46

Two parse trees for a‘bict

45

The Chomsky Hierarchy
Recall: There are several categories of gram-
mar that are more and less expressive, forming
a hierarchy:

Phrase-structure grammars
Context-sensitive grammars

Context-free grammars

Regular grammars

This is called the Chomsky hierarchy, after lin-
guist Noam Chomsky, who did much of the
original research.

47

Regular vs. Context-Free
Languages

Regular languages are simpler than program-
ming languages (e.g., numbers, identifiers).

e Context-free grammars can describe nested
constructs, matching pairs of items.

e Regular grammars can only describe linear,
not nested, structure.

48

Implementations
The Translation Process

1. Lexical Analysis: Converts source code
into sequence of tokens.
We use regular grammars and finite state
automata (recognizers).

2. Syntactic Analysis: Structures tokens
into initial parse tree.
We use CFGs and parsing algorithms.

3. Semantic Analysis: Annotates parse tree
with semantic actions.

4. Code Generation: Produces final ma-
chine code.
50

Using CFGs for PL Syntax
Some aspects of programming language syntax
can't be specified with CFGs:

e Cannot declare the same identifier twice in
the same block.

e Must declare an identifier before using it.
e A[i,j] is valid only if A is two-dimensional.

e The number of actual parameters must equal
the number of formal parameters.

Other things are awkward to say with CFGs:

e Identifier names must be no more than 50
characters long.

These aspects of a programming language are
usually specified informally, separately from the
formal grammar.

49

Compiler-compilers

m compiler-compiler
@ parser parse tree

Examples:

e yacc (“yet another compiler-compiler”).
See: man yacc.

e bison (the GNU replacement for yacc)

e JavaCC.

See: http://www.webgain.com/products/java cc

So why does anyone still write compilers by
hand?

51

Parsing Techniques

Two general strategies:

e Bottom-up: Beginning with the leaves (the
sentence to be parsed), work upwards to
the root (the start symbol).

e Top-down: Beginning with the root (the
start symbol), work downwards to the leaves
(the sentence to be parsed).

Recursive descent parsing (top-down)

Every non-terminal is represented by a sub-
program that parses strings generated by that
non-terminal, according to its production rules.

When it needs to parse another non-terminal,
it calls the corresponding subprogram.

Requires: No left-recursion in the productions;
ability to know which RHS applies without look-
ing ahead.

52

Other Applications of Formal
Grammars

Identifying strings for an operating system
command

Examples
(Unix commands that use extended RES):

o 1s s[y-z]x*
e grep Se.h syntax.tex

e Scripting languages like awk use regular ex-
pressions.
awk ’/tolkgle/ {print $1}’ syntax.tex

54

Addressing the " no left-recursion”
problem

Problem: Left Recursion
<expr> --> <expr> + <term> | <term>

Possible Solutions:
1. Right Recursion? E.g.,

<expr> --> <term> | <term> + <expr>
2. Left Recursion Removal, E.g.,

<expr> --> <term> {+ <term>}
3. Left Factoring, E.g.,

<expr> --> <term> [+ <expr>]

The EBNF corresponds to the code you'd write.
53

Voice recognition

Problem: Given recorded speech, produce a
string containing the words that were spoken.

Difficulties:

How can a grammar help?

55

