Syntax of Programming
Languages

Reading:

o Mitchell, section 4.1

©Diane Horton 2000;
Modified by Sheila Mcllraith 2004.

For a programming language, the units are not
words but “tokens”. Example:

int num;

num = x + 3;
Tokens:
Structure:

statement-list

statement statement-list
\
declaration statement
wee 1D assignment
\
it num ID" = expression

Translation Process Summary

1. Lexical Analysis:
Converts source code into sequence of to-
kens

2. Syntactic Analysis:
Structures tokens into initial parse tree

3. Semantic Analysis:
Annotates parse tree with semantic actions

4. Code Generation:
Produces final machine code

Specifying syntax informally

Example: “Everything between “/*" and “x/"
is a comment and should be ignored.”

Code:

/* Do such and such, watching out for problem fleep.
Store the result in y. */
3;

When syntax is defined informally, incompati-
ble dialects of the language may evolve.

Specifying syntax formally

The state of the art is to define programming
language syntax formally.

There are a number of well-understood for-
malisms for doing so.

We'll talk about this in some detail.

What is a Programming
Language?

We tend to think of a compiler or an IDE as a
programming language.
E.g., JDF, Java Workshop.

But these things are not Java. The language is
an abstract entity, which these pieces of soft-
ware implement.

Specification:
Vs
Implementation:

Formal notion of 2 “language”: a set of strings
of symbols from some alphabet.

Semantics

Definition: The study or science of meaning in
language forms. Root: means ‘“signify”.

The semantics of a language defines the mean-
ing of the legal sentences of the language.

Specifying semantics informally

Example: The Java Language Specification by
Gosling, Joy, and Steele, page 93:

“The meaning of a name classified as a PackageName
is determined as follows:

(1) If the package name consists of a single Identifier,
then this identifier denotes a top-level package named by
that identifier. If no packages of that name is accessible,
then a compile-time error occurs.

(2) If a package name is of the form Q.Id, then ...

Problems with informal specification of seman-
tics?

Language Specification
Two parts: syntax and semantics.
Syntax

Definition*: (1) The way in which words are
put together to form phrases and sentences.
(2) Analysis of the grammatical arrangement
of words, to show their relation.

Root: means “arrange”.

The syntax of a language tells us two things:
what's legal, and what the relationships are in
a legal sentence.

Example of relationships:
“used kids clothing store”

*Definitions are paraphrased from Webster’'s and the
OED.

Unfortunately

Defining semantics is inherently harder than
defining syntax.

There are several formalisms for specifying pro-

gramming language semantics (see Sebesta sec-
tion 3.5), but they are hard to use and have

not been widely adopted.

The state of the art is to define programming
language semantics informally, in English.

Intended Audience

A language specification is written for three
categories of people:

e Implementers,
i.e., programmers writing a2 compiler for
that language.

e Users,
i.e., programmers writing in that language.

e Potential future users,
during development of the language.

Want: What properties do we want a good
language specification to have?

Regular Expressions

Kleene's language definition for Regular Languages.

Examples:
o (0+1)*
o« 1T(+)
e (a+b)*aa(a + b)*

Notation:

Kleene Closure: * superscript denotes 0 or more rep-
etitions

Positive Closure: * superscript denotes 1 or more rep-
etitions

Alternation: binary “4" denotes choice. It is alsc de-
noted by |, i.e., (0[1)*.

“(" and “)" are used for grouping
e (epsilon) denotes the empty or "null" string.

@ denotes the language with no strings.

Specifying PL syntax
Two parts: Lexical rules, and syntax.
Lexical rules

Specify the form of the building blocks of the
language:

e what's a token

e how tokens are delimited
e where can white space go
e syntax of comments

This is often described informally, in English.

Trickier parts (e.g., syntax of real numbers)
are sometimes described more formally.

Syntax

Specifies how to put the building blocks to-
gether.

Give regular expressions for these languages:

1. All alphanumeric strings beginning with an
upper-case letter.

2. All strings of a's and b's in which the third-
last character is b.

3. All strings of 0's and 1's in which every pair
of adjacent 0's appears before any pairs of
adjacent 1's.

4. All the binary numbers with exactly six 1's.

5. What is another way of writing 0t1+2t

Grammars

Informal idea of grammar: A bunch of rules.
e Don't end a sentence with a preposition.

e Subject and verb must agree in number.

A Formal grammar is a different concept.

A ‘“language” is a set of strings; A grammar
“generates” a language — it specifies which
strings are in the language.

A grammar can be used to define any lan-
guage: Java, Spanish, Unix commands.

There are many kinds of formal grammar.

Limitations of Regular Expressions

Regular expressions are not powerful enough
to describe some languages.

Examples:

e The language consisting of all strings of
one or more a's followed by the same num-
ber of b's.

e The language consisting of strings contain-
ing a's, left brackets, and right brackets,
such that the brackets match.

Research question: How can we be sure there
is no regular expression for these languages?

Research question: Exactly what things can
and cannot be expressed with a regular expres-
sion?

Chomsky’s Hierarchy

There are several categories of grammar, or-
dered by expressiveness (the last one is the
least expressive):

e Phrase-Structure Grammars
e Context-Sensitive Grammars
e Context-Free Grammars

e Regular Grammars (can be described by
regular expressions)

This hierarchy (circa 1950) is named after lin-
guist (and political activist) Noam Chomsky,
who researched grammars for natural language.

Context-Free Grammar

CFGs are more powerful than regular expres-
sions.

Definition

A CFG has four parts:

e A set of tokens (or “terminals”):
The atomic symbols of the language.

e A set of “non-terminals”:
Variables used in the grammar.

A special non-terminal chosen as the “start-
ing non-terminal” or “start symbol":

It represents the top-level construct of the
language.

A set of rules (or “productions”), each spec-
ifying one legal way that a non-terminal
could be constructed from a sequence of
tokens and non-terminals.

Example

A CFG for real humbers:
Terminals: 0 1 23456789 .

Non-terminals: real-number, part, digit.

Productions:

— A digit is any single token except ".".
— A part is a digit.
— A part is a digit followed by a part.

— A real-number is a part, followed by “.",
followed by a part.

Start symbol: real-number.

Note that we use recursion to specify repeated
occurrences.

We have defined this CFG using plain English.
A notation might be more convenient.

Regular vs. Context-Free
Languages

Regular languages are simpler than program-
ming languages (e.g., numbers, identifiers).

e Context-free grammars can describe nested
constructs, matching pairs of items.

e Regular grammars can only describe linear,
not nested, structure.

21

Backus-Naur Form

A notation for writing down a CFG.

Example

<real-number> --> <part> . <part>

<part> --> <digit> | <digit> <part>

<digit> ->0l1|2[3[4|5]6[7]|8]69
Notation

Productions: Non-terminal, followed by “-->",
then the list of tokens and non-terminals
that it can be made of, without punctua-
tion.

Terminals: Just written within the rules.

Non-terminals: enclosed with “<" and “>".
(<empty> denotes the empty string.)

Start symbol: Usually just the first non-
terminal listed.

Regular Grammars

Defined over alphabet X, using non-terminals
and grammar rules, analogous to terminals (words),
and production rules of Context-Free Gram-
mars (which we'll see later), but more re-
stricted. They are limited to productions of
the form:

Left-recursive:
<N> ::=<X>ab
<X> ::=a | <X> b

Right-recursive:
N ::=b | b<Y>
Y::=ab | ab<y>

22

Note that this is a language for describing a
language! We call this a “meta-language”.
(“meta” meaning “above” or “transcending”.)

Write a CFG for each of the 3 languages we
wrote regular expressions for a few slides ago.

More Examples

Write a CFG for each of these languages:

1. all non-empty strings containing only a’'s.

2. all strings of odd length containing only
a's.

3. all strings of one or more a's followed by
one more more b's.

Extended BNF

There are extensions to BNF that make it more
concise, but no more powerful (i.e., there is no
language that can be expressed with EBNF but
not with BNF).

Examples:

e { blah } denotes zero or more repetitions
of blah.

e [blah] denotes that blah is optional.

e 2 + superscript denotes one or more repe-
titions.

e 2 numeric superscript denotes a maximum
number of repetitions.

e (and) are used for grouping.

There is no one standard EBNF; it just refers
to any extension of BNF.
23

CFGs Are More “Powerful”
Than REs

That is, there are languages that cannot be
described with a RE but can be described with
a CFG.

Example: The language consisting of strings
with one or more a's followed by the same
number of b’s.

There is no regular expression for this lan-
guage.

CFG for the language:

20

EBNF is more concise than BNF.

Example (Sebesta, p. 121)

BNF grammar:

<expr> --> <expr> + <term> |
<expr> - <term> |
<term>

<term> --> <term> * <factor> |
<term> / <factor> |
<factor>

EBNF grammar for the same language:

<expr> --> <term> { (+|-) <term> }
<term> --> <factor> { (*|/) <factor> }

24

Derivations

Example:

Definition: Beginning with the start symbaol,
apply rules until there are only terminals left.

A sentence is in the language generated by a
grammar iff there is a derivation for it.
25

Parse Trees

Parse trees show the structure within a sen-
tence of the language.

Example
Grammar:
<real-number> --> <part> . <part>
<part> --> «digit> | <digit> <part>
<digit> ->0 1234|565]|6[7]|8]89

Parse tree for the sentence “97.123":

26

Definitions

Parse tree: A tree in which
e the root is the start symbol;
e every leaf is a terminal; and

e every internal node is a non-terminal, and
its children correspond, in order, to the
RHS of one of its productions in the gram-
mar.

Parsing: The process of producing a parse
tree.

A sentence is in the language generated by a

grammar iff there is a parse tree for the sen-
tence.

27

