Data Structure: the "Structure"

Representing a parse tree

Simple grammar:

$$
\begin{aligned}
& \begin{array}{l}
\text { <np> }:=\text { <det> <adjList> <n> } \\
\text { <adjList> }::=\{\text { <adj> }\}
\end{array} \\
& \begin{array}{l}
\text { det> }::=\text { the } \mid \text { adj } \\
\text { det }
\end{array} \\
& \begin{array}{lll}
\text { <net> } & :=\text { the } & \text { a } \\
\text { <n } & :=\text { child } & \text { dog | professor } \\
\text { adj> } & :=\text { small } & \text { friendly | noisy }
\end{array}
\end{aligned}
$$

Parse tree:

Representation as a Prolog structure:

Prolog Program
(1) $\operatorname{SQDIST}(\mathrm{p} 2(\mathrm{X} 1, \mathrm{Y} 1), \mathrm{p} 2(\mathrm{X} 2, \mathrm{Y} 2), \mathrm{D})$
:- XD is $\mathrm{X} 1-\mathrm{X} 2$,
YD is Y1-Y2
D is $X D * X D+Y D * Y D$
(2) $\operatorname{SQDIST}(\mathrm{p} 3(\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1), \mathrm{p} 3(\mathrm{X} 2, \mathrm{Y} 2, \mathrm{Z} 2), \mathrm{D})$:- XD is $\mathrm{X} 1-\mathrm{X} 2$,

YD is $\mathrm{Y} 1-\mathrm{Y} 2$,
ZD is $\mathrm{Z1}-\mathrm{Z2}$
D is $\mathrm{XD} * \mathrm{XD}+\mathrm{YD} * \mathrm{YD}+\mathrm{ZD} * \mathrm{ZD}$
Query: $\operatorname{SQDIST}(\mathrm{p} 2(1,2), \mathrm{p} 2(3,5), \mathrm{D})$
This query unifies with the head of rule (1) with $\{\mathrm{X} 1 \backslash 1, \mathrm{Y} 1 \backslash 2, \mathrm{X} 2 \backslash 3, \mathrm{Y} 2 \backslash 5\}$
so, XD is $\mathrm{X} 1-\mathrm{X} 2=1-3=-2$
YD is $\mathrm{Y} 1-\mathrm{Y} 2=2-5=-3$
D is $(-2)^{2}+(-3)^{2}=13$
So, $D=13$ is returned
Note: the query does not unify with the head of rule (2), so only rule (1) is used.

Data Structures - Function Term

Data Structures are actually just Prolog Function Terms.

Prolog Function terms do not have values. They ust act like data structures

Acknowledgements to Tony Bonner for the Function Symbol slides that follow on functions.

Function terms do not have values. In Prolog, they act as data structures:
let $\mathrm{p} 2(\mathrm{X}, \mathrm{Y})$ denote a point in 2-dim space let $\mathrm{p} 3(X, Y, Z)$ denote a point in 3-dim space.
ite a Prolog program, SQDIST (Point1,Point 2,D), two points. The program should work for 2 and 3 -dim points
Want:
$\operatorname{SQDIST}(\mathrm{p} 2(1,2), \mathrm{p} 2(3,5), \mathrm{D})$
returns $D=(3-1) * * 2+(5-2) * * 2$ $=4+9=13$
and
$\operatorname{SQDIST}(\mathrm{p} 3(1,1,0), \mathrm{p} 3(2,2,3), \mathrm{D})$
returns $D=(1-2) * * 2+(1-2) * * 2+(0-3) * * 2$

$$
=1+1+9=11
$$

SQDIST(p2(0,0), p3(1,1,1), D)
is undefined

Prolog Program:
(1) SQDIST(p2(X1,Y1), p2(X2,Y2), D)
:- XD is $\mathrm{X} 1-\mathrm{X} 2$,
YD is Y1-Y2,
D is $\mathrm{XD} * \mathrm{XD}+\mathrm{YD} * Y \mathrm{D}$.
(2) $\operatorname{SQDIST}(\mathrm{p} 3(\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1), \mathrm{p} 3(\mathrm{X} 2, \mathrm{Y} 2, \mathrm{Z} 2), \mathrm{D})$
:- XD is X1-X2
YD is $\mathrm{Y} 1-\mathrm{Y} 2$
ZD is $\mathrm{Z} 1-\mathrm{Z2}$,
D is $X D * X D+Y D * Y D+Z D * Z D$.
Query: $\operatorname{SQDIST}(\mathrm{p} 3(1,1,0), \mathrm{p} 3(2,2,3), \mathrm{D})$.
This query unifies with the head of rule (2), with $\{\mathrm{X} 1 \backslash 1, \mathrm{Y} 1 \backslash 1, \mathrm{Z} 1 \backslash 0, \mathrm{X} 2 \backslash 2, \mathrm{Y} 2 \backslash 2, \mathrm{Z} 2 \backslash 3\}$
so, $X D$ is $1-2=-1$
YD is $1-2=-1$
ZD is $0-3=-3$
So, $D=11$ is returned
Note: the query does not unify with the head of rule (1), so only rule (2) is used.

Function Symbols in Prolos

In logic, there are two kinds of objects: predicates and functions.

- Predicates represent statements about the world:
John hates Mary: hates (john,mary)
John is short: short(john)
(hates is a predicate symbol, short (john) is an atomic formula)
- Function terms represent objects in the world the mother of Mary: mother-of(mary)
a rectangle of length 3 and width 4 :

$$
\text { rectangle }(3,4)
$$

(mother-of(mary) is a function term, rectangl is a function symbol)

Prolog Program
(1) $\operatorname{SQDIST}(\mathrm{p} 2(\mathrm{X} 1, \mathrm{Y} 1), \mathrm{p} 2(\mathrm{X} 2, \mathrm{Y} 2), \mathrm{D})$
:- XD is $\mathrm{X} 1-\mathrm{X} 2$,
YD is Y1-Y2,
D is $\mathrm{XD} * \mathrm{XD}+\mathrm{YD} * \mathrm{YD}$
(2) $\operatorname{SQDIST}(\mathrm{p} 3(\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1), \mathrm{p} 3(\mathrm{X} 2, \mathrm{Y} 2, \mathrm{Z} 2), \mathrm{D})$
:- XD is X1-X2,
YD is Y1-Y2,
ZD is $\mathrm{Z} 1-\mathrm{Z} 2$,
D is $\mathrm{XD} * \mathrm{XD}+\mathrm{YD} * \mathrm{YD}+\mathrm{ZD} * \mathrm{ZD}$
Query: $\operatorname{SQDIST}(\mathrm{p} 2(0,0), \mathrm{p} 3(1,1,1), \mathrm{D})$
Note: this query does not unify with any rule so Prolog simply returns no, i.e., no answers for D.

Returning Function Terms

as Answers
e.g., given a point, $\mathrm{p} 2(\mathrm{X}, \mathrm{Y})$, return a new point with double the coordinates. e.g.,
Query: double(p2(3, 4), P)
Answer: $:=\mathrm{p} 2(6,8)$
Prolog Program:
double(p2(X1, Y1) , p2(X2, Y2))

- X 2 is $2 * \mathrm{X} 1$

Y 2 is $2 * \mathrm{Y} 1$.
In Plain English: if $\mathrm{X} 2=2 * \mathrm{X} 1$ and $\mathrm{Y} 2=2 * \mathrm{Y} 1$, then the double of $\mathrm{p} 2(\mathrm{x} 1, \mathrm{y} 1)$ is $\mathrm{p} 2(\mathrm{x} 2, \mathrm{y} 2)$

An equivalent program using " $=$ ": double(p2(X1, Y1), P)

- X 2 is $2 * \mathrm{X} 1, \mathrm{Y} 2$ is $2 * \mathrm{Y} 1$
$\mathrm{P}=\mathrm{p} 2(\mathrm{X} 2, \mathrm{Y} 2)$.
Here, " $=$ " is being used to assign a value to variable P. Try to avoid this!!!!!! It reflects procedural thinking.

Problem:

Write a Prolog program that computes the total resistance of any circuit

For example,

Query: resistance(series(1,2), R)
Answer: $\mathrm{R}=1+2=3$

Query: resistance(par (2,3), R) Answer: $\mathrm{R}=(2 * 3) /(2+3)=6 / 5=1$.

Query: resistance(series(3,par(2,3)), R)
Answer: $\mathrm{R}=3+1.2=4.2$

Query: resistance (3, R)
Answer: $R=3$

Sample Execution

Prolog Program:

```
double(p2(X1,Y1), p2(X2,Y2))
- X 2 is \(2 * \mathrm{X} 1\)
Y2 is \(2 * Y 1\)
```

Query: double(p2 $(3,4), \mathrm{P})$
The query unifies with the head of the rule where the mgu is

$$
\{\mathrm{X} 1 \backslash 3, \mathrm{Y} 1 \backslash 4, \mathrm{P} \backslash \mathrm{p} 2(\mathrm{X} 2, \mathrm{Y} 2)\}
$$

The body of the rule then evaluates:

$$
\begin{array}{ll}
\mathrm{X} 2 \text { is } 2 * \mathrm{X} 1, & \text { i.e., } 6 \\
\mathrm{Y} 2 \text { is } 2 * \mathrm{Y} 1, & \text { i.e., } 8
\end{array}
$$

The mgu becomes $\{\mathrm{X} 1 \backslash 3, \mathrm{Y} 1 \backslash 4, \mathrm{P} \backslash \mathrm{p} 2(6,8)\}$
So, the answer is $\mathrm{P}=\mathrm{p} 2(6,8)$.

Solution

(1) resistance (R, R) :- number (R).
(2) resistance(series (C1, C2), R) :- resistance(C1, R1) resistance(C2, R2) R is $R 1+R 2$.
(3) resistance (par (C1,C2), R)
:- resistance (C1,R1),
resistance (C1,R1),
resistance(C2,R2), R is ($\mathrm{R} 1 * \mathrm{R} 2$)/($\mathrm{R} 1+\mathrm{R} 2$)

Sample Query:
resistance (series ($3, \operatorname{par}(6,3)$), TR)
i.e., compute the total resistance, TR , of the following circuit:

Recursion with Function Symbols

Example: Electrical circuits

- Two resistors in series, with resistances R_{1} and R_{2}, respectively
- Total resistance of the circuit is $5+6=11$.
- Can represent the circuit as a function term: series $(5,6)$

- Two resistors in parallel
- Total resistance of the circuit is $\frac{2 \times 3}{2+3}=1.2$

Represent the circuit as a function term. $\operatorname{par}(2,3)$.

More Complex Cīrcuits

par(3, series(2,3))

series(par (4, 5), par (2,3))

Execution of Prolog Programs

- Unification: (variable bindings) Specializes general rules to apply to a specific problem
- Backward Chaining

Top-Down Reasoning/
Goal-Directed Reasoning:
Reduces a goal to one or more subgoals.

- Backtracking

Systematically searches for all possible solutions that can be obtained via unification and backchaining

Unification

Two atomic formulas with distinct variables unify if and only if they can be made syntactically identical by replacing their variables by other terms. For example,

- loves(bob,Y) unifies with loves(bob, sue)
loves(bob, Y) unifies with loves (X,santa) by replacing y by santa and x by bob.

Both formulas become loves(bob,santa)
Formally, we use the substitution
$\{\mathrm{Y} \backslash$ santa, $\mathrm{X} \backslash$ bob $\}$
which is called a unifier of loves(bob,Y) and loves (X, santa
Note that loves(bob, X) does not unify with loves (tony, Y), since no substitution for X, Y can make the two formulae syntactically equal.

Rules of Unification

A constant unifies only with itself.

Two structures unify iff they have the same name, number of arguments, and all the arguments unify

A variable unifies with anything. If the other thing has a value, the variable is instantiated Otherwise, the two are associated in a way such that if one gets a value so does the other

Unification requires all instances of the same variabe in a rule to get the same value

All rules searched, if requested by successive typing of ";"

83

Unification (cont.)

Examples

$p(X, X)$ unifies with $p(b, b)$ and with $p(c, c)$, but not with $p(b, c)$
$p(X, b)$ unifies with $p(Y, Y)$ with unifier $X b, Y$ to become $p(b, b)$
$p(X, Z, Z)$ unifies with $P(Y, Y, b)$ with unifier X b,Y b,Z b to become p(b,b,b)
$p(X, b, X)$ does not unify with $p(Y, Y, c)$.

Unification with Function Terms

Prolog uses unification to compute its answers.
e.g., Given the database:
owns(john, car(red,corvette))
owns(john, cat(black,siamese,sylvester) owns(elvis, copyright(song,"jailhouse rock")) owns(tolstoy, copyright(book, "war and peace")) owns(elvis, car(red,cadillac))
the query owns(Who, car(red, Make))
unifies with the following database facts

- owns(elvis, car(red, cadillac)), with unifier $\{$ Who $\backslash e l v i s, ~ M a k e \backslash c a d i l l a c\} ~$
- owns (john, car(red, corvette))
with unifier $\{$ Who $\backslash j o h n$, Make \backslash corvette $\}$

Most General Unifiers (MGU)

The atomic formulas $p(X, f(Y))$ and $p(g(U), V$ have infinitely many unifiers. e.g.

- $\{\mathrm{X} \backslash \mathrm{g}(\mathrm{a}), \mathrm{Y} \backslash \mathrm{b}, \mathrm{U} \backslash \mathrm{a}, \mathrm{V} \backslash \mathrm{f}(\mathrm{b})\}$
unifies them to give $p(g(a), f(b))$
- $\{\mathrm{X} \backslash \mathrm{g}(\mathrm{c}), \mathrm{Y} \backslash \mathrm{d}, \mathrm{U} \backslash \mathrm{c}, \mathrm{V} \backslash \mathrm{f}(\mathrm{d})\}$ unifies them to give $p(g(c), f(d))$.

However, these unifiers are more specific than necessary

The most general unifier (mgu) is $\{\mathrm{X} \backslash \mathrm{g}(\mathrm{U}), \mathrm{V} \backslash \mathrm{f}(\mathrm{Y})\}$
It unifies the two atomic formulas to give $\mathrm{p}(\mathrm{g}(\mathrm{U}), \mathrm{f}(\mathrm{Y}))$ Every other unifier results in an atomic formula of this form

The mgu uses variables to fill in as few detail as possible.

MGU Example

$f(W, g(Z), Z)$
$f(X, Y, h(X))$

To unify these two formulas, we need

$$
\begin{aligned}
Y & =g(Z) \\
Z & =h(X) \\
X & =W
\end{aligned}
$$

Working backwards from W, we get

$$
\begin{aligned}
Y & =g(Z)=g(h(W) \\
Z & =h(X)=h(W) \\
X & =W
\end{aligned}
$$

So, the mgu is
$\{X \backslash W, Y \backslash g(h(W)), Z \backslash h(W)\}$

More MGU Examples

t_{1}	t_{2}	$M G U$
$f(X, a)$	$f(a, Y)$	
$f(h(X, a), b)$	$f(h(g(a, b), Y), b)$	
$g(a, W, h(X))$	$g(Y, f(Y, Z), Z)$	
$f(X, g(X), Z)$	$f(Z, Y, h(Y))$	
$f(X, h(b, X))$	$f(g(P, a), h(b, g(Q, Q)))$	

Syntax of Substitutions

Formally, a substitution is a set

$$
\left\{v_{1} \backslash t_{1}, \ldots, v_{n} \backslash t_{n}\right\}
$$

where the v_{i} 's are distinct variable names and the t_{i} 's are terms that do not use any of the v_{j} 's.

Positive Examples:
$\{X \backslash a, Y \backslash b, Z \backslash f(a, b)\}$
$\{X \backslash W, Y \backslash f(W, V, a), Z \backslash W\}$

Negative Examples:
$\{f(X) \backslash a\}$
$\{X \backslash a, X \backslash b\}$
$\{X \backslash f(X)\}$
$\{X \backslash f(Y), Y \backslash g(q)\}$

