Transitive Relations

parent(sally,jane). parent(bob,jane).
parent(sally,john). parent(bob,john).
parent(mary,sally). parent(al,sally).
parent(ann,bob). parent(mike,bob).
parent(jean,al). parent(joe,al).
parent(ruth,mary). parent(jim,mary).

parent(esther,ruth). parent(mick,ruth).

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

7- grandparent(Y,jane).

Y = mary ;
Y = al ;

Y = ann ;

Y = mike
No

7- ancestor(X,jane).
X = sally ;
X = bob ;
X = mary ;
X = al ;

X = ann ;

X = mike

X = jean

X = joe

X = ruth

X = jim ;

X = esther ;
X = mick ;
No

35

Steps to a Recursive Predicate
1. Predicate Form:

e Choose a predicate name appropriate for
something that is true or false.

e Choose mnemonic argument names.

2. Spec: Write the specification in this form:
pred succeeds iff ...

3. Base Cases:

e \When is it so easy to tell the predicate is
true that you needn’t check any further?

e Write these base case(s).

4. Recursive Cases:

e When it’s not trivial, what do you need
to know is true before you can be sure
the predicate is true?

e This is the antecedent of your rule.
e There may be several non-trivial cases,
each needing a rule.

36



Lists in Prolog

Two ways to describe a list:

1. [ elements-with-commas |

Egs: [a, b, c]

[]
[a, [b, cl, d, [, el
[a’ X’ C’ d]
2. [ first | rest ] (rest must be a list)

Egs: [a | [b, cl]
[a | Rest]

Question: Why use the second form with |7

37

Unifying Lists

[X, Y, Z] = [john, likes, fish].

[cat] [xIyl.

[1,2]

[XIyl.

[a,b,c] = [XIY].

[a,b|Z]=[X]Y].

[X,abc,Y]=[X,abc|Y].

[[thelY]|Z] = [[X,hare] | [is,herell.

38



Let’s Write Some List Predicates List Membership

1. member(X, List). Definition of member...

2. append(Listl, List2, Result).
?- member(a,[a,b]).
3. swapFirstTwo(Listl, List2). Yes
?- member(a, [b,c]).
No
?- member (X, [a,b,c]).
X=a ;
X=b ;
X=c ;
No
?- member(a, [c,b,X]).
X=a ;
No
?- member (X,Y).
X=_G72, Y=[_G72|_G73] ;
X=_G74, Y=[_G72,_G74|_G75] ;
X=_G76, Y=[_G72,_G74,_G76|_G77] ;

4. length(List).

Lazy evaluation of potentially infinite data structures
39 40



[tracel

Yes

Call:
Call:
Call:
Exit:
Exit:
Exit:

(7
(8
(9
(9
(8)
(7

Trace of Member

?- member(c, [a,b,c,d]).

lists
lists
lists
lists
lists
lists

:member (c,
:member (c,
:member (c,
:member (c,
:member (c,
:member (c,

[a,
[b,
[c,
[c,
[b,
[a,

b, ¢, dl) ? creep
c, dl) 7 creep
dl) 7 creep

dl) 7 creep

c, dl) 7 creep

b, ¢, dl) 7 creep

41

A4 Digression

We're going to skip ahead to slides
59-63 and cover Negation as Failure
which you will need in A4. We'll return
to our list predicate examples after we
cover these slides.

42



Append - More than " appending”

Definition of append

Build a list:
7- append([a],[b].Y).
Y=[a,b]
Yes

Break a list up:

7- append(X,[b],[a,b]).

X=]a]
Yes

7- append([a],Y,[a,b]).

Y=[b]
Yes

Append (cont.)

7- append(X,Y,[a,b]).
X=[],Y=[a,b] ;

X=[a],Y=[b] ;
X=[a,b],Y=]] ;
No

Generate lists:

7- append(X,[b],Z2).
X=[],Z=[b] ;
X=[_G98],Z=[_G98,b] ;

X=[_G98, G102],Z=[_G98, G102,b] ;

Trace:

[tracel
Call:
Call:
Call:
Call:
Exit:
Exit:
Exit:
Exit:

(8) lists:append([b, cl, [p,
(9) lists:append([cl, [p, q,
(10) 1lists:append([1, [p, q,
(10) lists:append([], [p, q,
(9) lists:append([cl, [p, q,
(8) lists:append([b, cl, [p,
(7) lists:append

?- append([a,b,c],[p,q,r]l,L).
(7) lists:append([a, b, cI, [p, g9, r]l, _G303) 7 creep

q, rl, _G426) 7 creep

r], _G429) 7 creep

r]l, _G432) 7 creep

rl, [p, q, rl) ? creep
rl, [c, p, 9, r]l) 7 creep
g, rl, [b, ¢, p, q, rl) 7

([a, b, cl, [p, q, 1, [a, b, ¢, p, g, rl) 7 creep

L=1[a, b, ¢, p, q, r] ;

No

Try some other traces!

43

a4



Computing the Length

Definition of length...

?- length([a,b,c],L).
L=23

7- length([],L).
L=20

?7- length(X,3).
X = [_G66,_G68,_GT70]

?7- length(X,0).
X =[]

of a List

Trace of Lendgth:

Observe why this doesn’t work!

xlength([],0).

xlength([_|Y],N)

[tracel

Call:
Call:
Call:
Call:
Call:
Fail:
Fail:
Fail:
Fail:
Fail:

No

NOTE: Use built-in length function!!

45

:— xlength(Y,N-1).

?7- xlength([a,b,c,d],X).

(7) xlength([a, b, c, dl, _G296) 7 creep
(8) xlength([b, c, dl, _G296-1) 7 creep
(9) xlength([c, dl, _G296-1-1) 7 creep
(10) xlength([d]l, _G296-1-1-1) 7 creep
(11) xlength([l, _G296-1-1-1-1) 7 creep
(11) xlength([l, _G296-1-1-1-1) 7 creep
(10) xlength([d], _G296-1-1-1) ? creep
(9) xlength([c, dl, _G296-1-1) 7 creep
(8) xlength([b, c, dl, _G296-1) 7 creep
(7) xlength([a, b, c, dl, _G296) 7 creep

46



Trace of Length (cont) Accessing More Than One Initial
Element
But this does work
Definition of swap first two...
mylength([],0).

length([_|Y],N) :- mylength2(Y,M), N is M+1.
mylength([_IY],N) := mylength2(Y,M), N is ?- swap_first_two([a,bl, [b,al).

[trace] ?- mylength([a,b,c,d],X). Yes
Call: (7) mylength([a, b, c, dl, _G296) ? creep ?7- swap_first_two([a,b], [b,cl).
Call: (8) mylength([b, c, d], _L206) ? creep No
Call: (9) mylength([c, dl, _L225) ? creep ?7- swap_first_two([a,b,c], [b,a,cl).
Call: (10) mylength([dl, _L244) 7 creep Yes
Call: (11) mylength([1, _L263) 7 creep 7- swap_first_two([a,b,c], [b,a,d]).
Exit: (11) mylength([], 0) ? creep No

= Call: (11) _L244 is 0+1 ? creep ?- swap_first_two([a,b,c], X).

~ Exit: (11) 1 is 0+1 7 creep X = [b,a,cl;
Exit: (10) mylength([d]l, 1) ? creep No

= Call: (10) _L225 is 1+1 ? creep 7- swap_first_two([a,blY], X).

~ Exit: (10) 2 is 1+1 ? creep Y = _56, X = [b,al_56];
Exit: (9) mylength([c, d], 2) ? creep No

~ Call: (9) _L206 is 2+1 7 creep 7= swap_first_two([],X).

~ Exit: (9) 3 is 2+1 ? creep No
Exit: (8) mylength([b, c, dl, 3) 7 creep 7- swap_first_two([a],X).

~ Call: (8) _G296 is 3+1 7 creep No

= Exit: (8) 4 is 3+1 ? creep ?- swap_first_two([a,bl,X).
Exit: (7) mylength([a, b, c, d], 4) ? creep X = [b,al;

X =4 No

Yes

a7 48



Lists of a Specified Length

Definition of 1list of elem...

?- list_elem(X,b,3).

X = [b,b,b];

ERROR: QOut of global stack
?- list_of_elem(X,Y,2).

X = [_50,_50]

Y = _50;

ERROR: QOut of global stack

49

Lists of a Specified Length

New definition of 1list of elem...

?- working_list_elem(X,b,3).
X = [b,b,b];
No

?7- working_list_elem(X,Y,2).
X = [_50,_50]

Y = _50;

No

50



Beyond Horn Logic

So far, we have studied what is known as
pure logic programming, in which all the
rules are Horn.

For some applications, however, we need
to go beyond this.

For instance, we often need

— Arithmetic

— Negation

Fortunately, these can easily be accomo-

dated by simple extensions to the logic-
programming framework,

51

Arithmetic in Prolog

What is the result of these queries:

~

|
>

]

97-65, Y = 32-0, X =Y.

~

|
»<

]

97-65, Y =67, Z =95-Y, X = Z.

To get an expression evaluated, use
X is expression
where expression

e iS an arithmetic expression, and

e is fully instantiated.

Examples:

7- X is 10+17.

?-Y is 7, Z is 3+4, Y=Z.

52



Let’s Write Some Predicates

with Arithmetic
1. factorial(N, Ans).

2. sumlist(List, Total).

53

Factorial
factorial(0,1).
factorial(X,Y) :- W is X-1,
factorial(W,Z),
Y is Zx*X.
What are the preconditions for factorial?
Factorial with an Accumulator:
factorial2(0,X,X).
factorial2(N,A,F) :-
N > 0,
Al is N=x*A,
N1 is N -1,

factorial2(N1,A1,F).

What are the preconditions?

54



[tracel
Call:
~ Call:
- Exit:
Call:
- Call:
~  Exit:
Call:
~ Call:
~  Exit:
Call:
Exit:
- (Call:
~  Exit:
Exit:
~ Call:
~  Exit:
Exit:
~ Call:
~  Exit:
Exit:
X =6
Yes

Trace of Factorial

?- factorial(3,X).

(7
(8
(8
(8)
(9
(9
(9
(10)
(10)
(10)
(10)
(10)
(10)
(9
(9
(9
(8
(8)
(8
(7

factorial(3, _G284) 7 creep
_L205 is 3-1 7 creep

2 is 3-1 7 creep
factorial(2, _L206) 7 creep
_L224 is 2-1 7 creep

1 is 2-1 7 creep
factorial(1l, _L225) 7 creep
_L243 is 1-1 ? creep

0 is 1-1 ? creep

factorial(0, _L244) 7 creep

factorial(0, 1) ? creep
_L225 is 1*1 7 creep

1 is 1%1 ? creep
factorial(l, 1) ? creep
_L206 is 1*2 7 creep
2 is 1%2 7 creep
factorial(2, 2) 7 creep
_G284 is 2*3 ? creep
6 is 2*%3 7 creep
factorial(3, 6) 7 creep

55

[trace]

Call:
- Call:
~  Exit:
- Call:
~  Exit:
- Call:
~  Exit:
Call:
~  Call:
~  Exit:
- Call:
~  Exit:
- Call:
~  Exit:
Call:
- Call:
~  Exit:
- Call:
- Exit:
= Call:
~  Exit:
Call:
Exit:
Exit:
Exit:
Exit:

Z =6
Yes

Trace of Factorial w/ an
Accumulator

?- factorial2(3,1,Z).

(8) factorial2(3, 1, _G288) 7 creep
(9) 3>0 ? creep

(9) 3>0 ? creep

(9) _L206 is 3*1 7 creep

(9) 3 is 3*1 ? creep

(9) _L207 is 3-1 ? creep

(9) 2 is 3-1 ? creep

(9) factorial2(2, 3, _G288) 7 creep
(10) 2>0 ? creep

(10) 2>0 ? creep

(10) _L226 is 2*3 ? creep

(10) 6 is 2*3 7 creep

(10) _L227 is 2-1 7 creep

(10) 1 is 2-1 7 creep

(10) factorial2(1l, 6, _G288) 7 creep
(11) 1>0 ? creep

(11) 1>0 ? creep

(11) _L246 is 1*6 7 creep

(11) 6 is 1*6 7 creep

(11) _L247 is 1-1 ? creep

(11) 0 is 1-1 ? creep

(11) factorial2(0, 6, _G288) 7 creep
(11) factorial2(0, 6, 6) 7 creep
(10) factorial2(1, 6, 6) 7 creep
(9) factorial2(2, 3, 6) ? creep

(8) factorial2(3, 1, 6) ? creep

56



Sum of List

sumlist ([],0).

sumlist ([X|Rest] ,Ans)

Trace:

[tracel

Call:
Call:
Call:
Call:
Exit:
- Call:
~  Exit:
Exit:
- Call:
- Exit:
Exit:
~ Call:
~  Exit:
Exit:

Y =18

Yes

?- sumlist([5,10,3]1,Y).

(7
(8)
(9

sumlist([5, 10, 31, _G293) 7 creep
sumlist([10, 3], _L207) 7 creep
sumlist([3], _L227) 7 creep

(10) sumlist([]l, _L247) 7 creep
(10) sumlist([]l, 0) ? creep
(10) _L227 is 0+3 7 creep

(10) 3 is 0+3 7 creep

(9
(9
(9
(8
(8)
(8)
(7

sumlist([3], 3) 7 creep

_L207 is 3+10 7 creep

13 is 3+10 7 creep

sumlist([10, 3], 13) 7 creep
_G293 is 1345 7 creep

18 is 1345 7 creep

sumlist([5, 10, 3], 18) 7 creep

57

:- sumlist(Rest,Partial),

Ans is Partial+X.

Arithmetic Predicates
may not be Invertible

We may not be able to “invert” a predicate
that involves arithmetic.

That is, we may not be able to put a variable
in a different place.

Tip: Every time you write is, you must be
sure the expression will be fully instantiated.
If necessary, put a precondition on your predi-

cate.
58



Negation as Failure

No equivalent of logical not in Prolog:

e Prolog can only assert that something is
true.

e Prolog cannot assert that something is false.

e Prolog can assert that the given facts and
rules do not allow something to be proven
true.

59

Negation as Failure

Assuming that something unprovable is false is
called negation as failure.

(Based on a closed world assumption.)

The goal \+(G) succeeds whenever the goal
G fails.

?- member (b, [a,b,c]).

Yes

?- \+(member(b, [a,b,c])).
No

?- \+(member (b, [a,c])).
yes

60



Example: Disjoint Sets

overlap(S1,S2) :- member(X,S1),member(X,S2).

disjoint(S1,S2) :- \+(overlap(S1,S2)).

?7- overlap([a,b,c], [c,d,e]l).

Yes

?- overlap([a,b,c],[d,e,f]).

No

?- disjoint([a,b,c], [c,d,el).

No

?- disjoint([a,b,c],[d,e,f]).

Yes

?- disjoint([a,b,c],X).

No  Y%<-—-----——- Not what we wanted

61

Example: Disjoint Sets (cont.)
overlap(S1,S2) :- member(X,S1) ,member(X,S2).
disjoint(Sl,S2) - \+(overlap(S1,82)).

?7- disjoint([a,b,c],X).
No Y<————————- Not what we wanted

[trace] 7- disjoint([a,b,c],X).
Call: (7) disjoint([a, b, c], _G293) 7 creep
Call: (8) overlap([a, b, c], _G293) 7 creep
Call: (9) lists:member(_L230, [a, b, c]) 7 creep
Exit: (9) lists:member(a, [a, b, c]) 7 creep
Call: (9) lists:member(a, _G293) 7 creep
Exit: (9) lists:member(a, [a|_G352]) 7 creep
Exit: (8) overlap([a, b, c], [al_G352]) 7 creep
Fail: (7) disjoint([a, b, c], _G293) 7 creep

No
62



Safety

Proper use of Negation as Failure Consider the following rule:

(*) hates(tom,X) :- not loves(tom,X).

\+(G) works properly only in the following cases: This may NOT be what we want, for several

reasons:

1. When G is fully instantiated at the time e The answer is infinite, since for any per-
prolog processes the goal \+(G). son p not mentioned in the database, we

cannot infer loves(tom,p), SO we must infer

(In this case, \4+(G) is interpreted to mean “goal
hates(tom,p).

G does not succeed”.)
Rule (*) is therefore said to be unsafe.

2. When all variables in G are unique to G, e The rule does not require X to be a person.
i.,e., they don’'t appear elsewhere in the e.g., since we cannot infer

same clause.
loves (tom,hammer)

(In this case, \+(G(X)) is interpreted to mean “There loves(tom,verbs)

is no value of X that will make G(X) succeed”.) loves(tom,green)
loves (tom,abc)

we must infer that tom hates all these things.

63 64



Safety (Cont’d)

To avoid these problems, rules with negation
should be guarded:

hates(tom,X) :- vegetable(x), green(X),

not loves(tom,X).

i.e., Tom hates every green vegetable that he
does not love.

Here, vegetable and green are called guard literals.
They guard against safety problems by binding
X to specific values in the database.

65



