Procedure Activations

Lifetime of procedure:

e Begins when control enters activation
(call)

e Ends when control returns from
activation

Activation Tree:

e Shows flow of control from one
activation to another

e Root: Main program

e Edges: Call from one procedure to
another (read left to right)

e | eaves: Procedures that call no other
procedures

26

Example
main
procedure P
begin
procedure S begin ... end S;

if random(1) < 1 then P()
else { SO; QO }
end P;
procedure (begin ... end Q;
P;
Q;
P;

end

27

Sample Activation Trees

28

Activation Trees and Stack Frames

Running a program corresponds to a

traversal of (one of) its activation tree(s).

We can represent the traversal of the tree

using a stack.

Each item on the stack is called a frame.

= The stack of frames not only maintains
the call sequence info, but also keeps track
of the local and non-local environment for

each procedure.

29

Content of Stack Frames
Procedure Activation
e Run-time stack contains frames for main and Run-time Stack
program and each active procedure.

On a call:
e Each stack frame includes:

1. Pointer to stack frame of caller 1. 5et up stack frame on top of run-time

(Control Link) stack (current context)
2. Return address (within caller)
3. Mechanism to find non-local variables
(Access Link)
4. Storage for parameters
. Storage for local variables
6. Storage for temporary and final values

2. Do the real work of the procedure body

3. Release stack frame and restore caller’'s

context (as new top of stack)

&)

Run-time stack establishes a context for a

e In a language with first-class functions,
procedure invocation

this is more complex.

30 31

Context of Procedures

T WO contexts:

e static placement in source code (same

for each invocation)

e dynamic run-time stack context

(different for each invocation)

Name Resolution: Given the use of a
name (variable or procedure name), which
instance of the entity with that name is

referred to?

= Both static and dynamic contexts play a

role in this determination.
32

Scope

Each use of a name must be associated
with a single entity at run-time (ie, an

offset within a stack frame).

The scope of a declaration of a name is the
part of the program in which a use of that

name refers to that declaration.
The design of a language includes scope

rules for resolving the mapping from the use

of each name to its appropriate declaration.

33

Some Terminology

A name is:

e Visible to a piece of code if its scope

includes that piece of code.

e local to a piece of code (block/

procedure/main program) if its

declaration is within that piece of code.

e non-local to a piece of code if it is
visible, but its declaration is not within

that piece of code.

A declaration of a name is hidden if

another declaration supersedes it in scope.

34

Scope Rules

Two choices:
1. Use static context: lexical scope

2. Use dynamic context: dynamic scope

For local names, these are the same.

= Harder for non-local names, and not
necessarily the same for both types of

scope.

35

Scope Example

program L;

var n: char; {n

procedure W;
begin
write(n) ; {n

end;

procedure D;

var n: char; {n

begin
n:= ’D’; {n
W
end;
begin
n:= ’L’%; {n
W;
D
end.

declared in L}

referenced in W}

declared in D}

referenced in D}

referenced in L}

36

Lexical Scope

e Names are associated with declarations
at compile time

e Find the smallest block syntactically
enclosing the reference and containing a

declaration of the name

e Example:

— The reference to n in W is associated
with the declaration of n in L

— The output is?

Benefit: Easy to determine the right
declaration for a name from the text of the

program.

37

Dynamic Scope

e Names are associated with declarations

at run time

e Find the most recent, currently active

run-time stack frame containing a

declaration of the name

e Example:

— The reference to n in W is associated

with two different declarations at two

different times

— The output is?

38

Dynamic Scope: Pros and Cons

Benefit: reduces need for parameters.

Problems:

e hard to understand behavior from the
text alone.

e renaming variables can have unexpected

results.

e NO protection of one's local variables
from a called procedure.

(Ie, if A calls B, B can modify A’s local variables.)

e Can be slower to execute.

NOTE: Most languages use lexical scope,
although early interpreted languages used
dynamic scope because of the flexibility and

ease of implementation.
39

Scoping and the Run-time Stack
Nested Procedures and Static Scope

Access link shows where to look for

program
non-local names. a,b,c : integer; // 1
procedure r
) a : integer; // 5
Static Scope: A .. b ... e
end r; // 6
Access link points to stack frame of procedure p
_ . c : integer; // 3
the lexically enclosing procedure procedure s
_ _ d,e : integer // 8
(total no. links to follow determined at a b c
compile time) r; // 9
end s;
r; // 4
. S; /17
Dynamic Scope: end p;
Access link points to stack frame of p; // 2

caller

40 41

Nesting Depth

Nesting depth of a procedure is how many

lexical levels deep it is.
e Main program has nesting depth 1.
e Body of p has nesting depth 2.

e Body of s has nesting depth 3.

Note: Declarations of p and r have nesting
depth 1, but declarations and statements

within p and r have nesting depth 2.

42

Nesting Depth and Access Links

procedure v

begin /* v *x/
...U...; /* use of u */

end; /*x v x/

To determine the access link for name u,
follow n — m access links from proc v in
which u is used, where n is the nesting
depth of the body of v and m is the nesting
depth of the declaration of u.

43

Run-Time Stack Trace Dynamic Scope Example

program
Trace through above program, showing a : integer;
snapshot of run-time stack at points 1, 3, Pr°°ed‘}re z
a : integer;
5, 8, 5 (again). o is 1
ys
output a;
end z;
procedure w
a : integer;
a := 2;
ys
output a;
end w;
procedure y ...
a := 0;
end y;
a := b;
z;
W3
output a;
end
44

Using a Display
Optimizing Variable Access

e If 2 procedure is at nesting depth n, it

Problem: Accessing non-local names may have to follow n — 1 static links to
requires following links up the access link find variable addresses
chain. _ _ _
e Display is an array of pointers to stack
frames
Solution for lexical scoping only:
Maintain a vector of currently-active e A variable is stored at an offset in the
static-chain frames. frame pointed to by the i'th display

e Called the display element, where i is the nesting level of

procedure where variable was declared
e Pioneered in Algol60

e Makes addresses directly accessible e Display must be maintained along with

run-time stack

46 47

Display in Static Example

For example, during execution of proc s:

D[1]: Pointer to stack frame for main pgm

D[2]: Pointer to stack frame for procedure p

D[3]: Pointer to stack frame for procedure s

e Address of d is D[3]+Offset+0
Address of e is D[3]4Offset+1

Address of ¢ is D[2]4 Offset+0
e Address of a is D[1]4+Offset+0
e Address of b is D[1]4+Offset+1

48

Maintaining the Display

49

Summary:
Procedural Language Design Issues

Components of a procedure
— name

— parameters

— body

— optional result

Parameter passing

— pass by value

— pass by result

— pass by value-result
— pass by reference
— pass by name

Aliasing through parameter passing
Procedure Activations

Stack frames

Lexical scope

Dynamic scope

Implementing scope with stack frames

Displays

50

