More Practice Procedures

e addToENnd: add an element to the end of
a list.
(addToEnd 'a '(abc)) = (abca)

e revLists: given a list of lists, form new list
consisting of all elements of the sublists in
reverse order.
((12)(345)(6))=>(654321)

e revListsAll: given a list of lists, form new
list from reversal of elements of each list.
((12)(345)(6))=>(215436)

82

; Return a new list containing only the elements of list
; that pass the test.
; Precondition:

(define prune
(lambda (test 1lst)
(cond ((null? 1st) ’())

((test (car 1st))

(cons (car 1st)
(prune test (cdr 1st))

)

)

(else (prune test (cdr 1st)))

)
Sample run

1 1=> (define (atom? x) (not (pair? x)))
;Value: atom?

1 1=> (prune atom? °((3 1) 4 (xy z) (x) y O))
;Value 12: (4 y ()

1 1=> (prune null? () (@abc) (1 2) O (O) x (yw) 2)))

sValue 13: (OO ()
84

Passing procedures: prune

Suppose we want a procedure that will test ev-
ery element of a list and return a list containing
only those that pass the test.

We want it to be very general: it should be
able to use any test we might give it. How wiill
we tell it what test to apply?

What should a procedure call ook like?
Example: Prune out the elements of myList
that are not atoms.

Now let's write the procedure.

83

Write calls to prune that will prune myList in
these ways:

e Prune out elements that are null.

e (Assume myList contains lists of integers.)
Prune out elements whose minimum is not
at least 50.

Hint: there is a built-in min procedure.

e (Assume myList contains lists.) Prune out
elements that themselves have more than 2
elements.

This is becoming tedious. We need to declare
a procedure for each possible test we might
dream up.

85

Passing Anonymous Procs A2 Digression

1 1=> (define myList

(O (abe) (12) O x(yw 2))) Some things that may help W/ A2
;Value: mylist

1]=> (prune (lambda (x) (not (null? x))) myList)
;Value 4: ((abc) (1 2) (O) (x (3 w) 2)) e defining procedures w/ successive arguments

1 1=> (define myList ’((59 72 40) (85 70 88 56))) e continuations
;Value: mylist

1]=> (prune (lambda (x) (> (apply min x) 50)) myList)
;Value 5: ((85 70 88 56)) e set!

1 1=> (define myList ’((23 34) (10 1 3 4) () (2 3 4)))
;Value: mylist

1]=> (prune (lambda (x) (<= (length x) 2)) myList)
;Value 6: ((23 34) ()

86 87

Procs w/ Successive Args Another Curry-ing Example

You can use curry-ing (named after Haskell Curry) to
define procedures to take successive arguments rather
than simultaneous ones.

Successive Arguments:

(define 1ltplus3

For example, take the function f(x,y) (or (f x y) in (lambda (x)
Scheme notation). Our objective is to define a proce- (lambda (y) (< x (+y 3)))
dure curry such that:)

(((curry £) x) y) = (£ x y)} ((1tplus3 5) 3) => #t
We do so using nested lambda expressions. ((1tplus3 6) 3) => O
(define curry Simultaneous Arguments:

(lambda (£)]
(lambda (x) (define 1tplus3_2
(lambda (y) (lambda (x y)
£ xy))) Kx (+y30)N

»

(1tplus3_2 5 3) => #t
(define times (curry *)) (1tplus3_2 6 3) => O
(define plus (curry +)) (1tplus3 5 3) => ERROR
(define double (times 2)) ((1tplus3_2 6) 3) => ERROR

(define triple (times 3))
Now: ((time 2) 3) => 6

VS. (x 2 3) => 6

ILe, ((times 2) 3) = (((curry *) 2) 3)
88 89

Scheme: continuations

What is a continuation?

« The current continuation at any point in the
execution of a program is an abstraction of
the rest of the program.

» A continuation of the evaluation of an
expression E in a surrounding context C
represents the entire future of the
computation, which waits for the value of

E.

Context C and expression E | Intuitive continuation of E
inC

(+5(*43)) The adding of 5 to the value
of E

(cons 1 (cons 2 (cons 3 '()))) The consing of 3, 2 and 1 to
the value of E

(define x 5) The multiplication of E by x -

(if (=0 x) 1 followed by a division by x

'undefined

(remainder (* (+ x 1) (- x 1)) X))

90

set!

Global Assignment (Generally EVIL!)

When an assignment statement is applied to variables

(i.e., memory locations) that are:
e maintained AFTER the procedure call is completed.

e are used for their values in this or other procedures.

it violates referential transparency and destroys the
ability to statically analyze source code (formally and
intuitively).

Eg.,
(define g 10) ; define global variable g

(define (func a)
(set! g (* g g)) ; globally assign g=g*g
(+ ag

)

1=> (func 7)
107

1=> (func 7)

10007 ; BAD!

92

Scheme: continuations (cont)

What is a continuation?

» A continuation of the evaluation of an
expression E in a surrounding context C
represents the entire future of the
computation, which waits for the value of E

A more precise notation of the continuation of E:

Context C and expression E | Continuation of E in C

(+5(*43) (lambda (e) (+ 5 e))

(cons 1 (cons 2 (cons 3 '()))) (lambda (e)
(cons 1 (cons 2 (cons 3 e))))

(define x 5) (lambda (e)
(if (=0 x) (remainder (*e (- x 1)) x))
'undefined

(remainder (* (+ x 1) (- x 1))

X))

91

set! (cont.)

(set! <var> <expr>)

alters the value of an existing binding for var.
Evaluates expr then assigns var to expr.

Useful for implementing counters, state change
or for caching values.

References: Dybvig

93

Summary: Functional Pgming

e Pure functional languages:

Referential transparency

No assignment

No iteration, only recursion

Implicit storage management (garbage collection)

Functions are values

e)-calculus

e LISP, Common LISP, Scheme

e Built-In Procedures

e Lists (cons cells, proper/improper)

e Read-eval-print loop

e Inhibiting 4+ Activating evaluation (quote, eval)

e Procedure definition and lambda expressions

94

Optional Material

The material after this point is optional. 1
have covered this (and much more) in other
years, but because of the reorganization of the
course, I was unable to get to it this year.

95

e Conditionals (if, cond)
e Equality Checking (eq?, =, equal?, eqv?)
e Recursion (practice, practice)

e Efficiency Concerns
— helper procedures
— let, let*, ...

— accumulators (did not discuss)
e Higher-order functions (map, apply, reduce)
e Passing Procedures, Returning Procedures

e Anonymous Procedures

More on Efficiency

We previously saw that helper procedures and
local variables (let, let*) can improve the ef-
ficiency of a Scheme program. A third way
of improving efficiency (sometimes) is through
the use of an accumulator.

Trace the following two procedures. What is
their complexity?

(define (revl 1st)
(cond ((null? 1st) ’(Q))
(else (append
(revl (cdr 1st))
(list (car 1st)))

96

More on Efficiency

Using an accumulator new.

(define (rev2 lst new)
(cond ((null? 1lst) new)
(else (rev2 (cdr 1lst)

(cons (car 1lst) new)))

97

A Lesson in (In)efficiency:
Fibonacci

Problem: Compute the nt" Fibonacci number.

Recall, the Fibonacci nhumbers are an infinite
sequence of integers 0, 1, 1, 2, 3, 5, 8, etc.,
in which each number is the sum of the two
preceding numbers in the sequence.

Let’s define a simple fibonacci procedure:

(define fib
; (fib n) returns the nth Fibonacci number
; Pre: n is a non-negative integer

(lambda (n)

98

Simple Fibonacci

Trace of Simple Fibonacci

(define fib
; (fib n) returns the nth Fibonacci number
; Pre: n is a non-negative integer
(lambda (n)
(cond ((=n 0) 1)
((=n 1) 1)
(else (+ (fib (- n 1)) (fib (- n 2))))

Problem: Procedure is doubly recursive.
Complexity is exponential!

(fib 4) calls (fib 3) and (fib 2),
(fib 3) calls (fib 2) and (fib 1), etc.

99

1 1=> (fib 3)

[Entering #[compound-procedure 1 fib]
Args: 3]
[Entering #[compound-procedure 1 fib]
Args: 1]
[1
<== #[compound-procedure 1 fib]
Args: 1]
[Entering #[compound-procedure 1 fib]
Args: 2]
[Entering #[compound-procedure 1 fib]
Args: 0]
[1
<== #[compound-procedure 1 fib]
Args: 0]
[Entering #[compound-procedure 1 fib]
Args: 1]
[1
<== #[compound-procedure 1 fib]
Args: 1]
[2
<== #[compound-procedure 1 fib]
Args: 2]
[3
<== #[compound-procedure 1 fib]
Args: 3]
;Value: 3

100

Faster Fibonacci

Hint: Use an accumulator (or two!) to store
intermediate values.

; (fast-fib pl p2 i n) returns the nth Fibonacci number
; Pre: n>=0 is an integer, 0<=i<=n is an integer,
; pl is the (i-1)th Fib number (or O if i is 0), and
; P2 is the ith Fib number.
(define fast-fib
(lambda (p1 p2 i n)

101

Trace of Faster Fibonacci

1 1=> (fib 3)

[Entering #[compound-procedure 2 fib]

Args: 3]
[Entering #[compound-procedure 3 fast-fib]
Args: 0
1
0
3]
[Entering #[compound-procedure 3 fast-fib]
Args: 1
1
1
3]
[Entering #[compound-procedure 3 fast-fib]
Args: 1
2
2
3]
[Entering #[compound-procedure 3 fast-fib]
Args: 2
3
3
3]
[3
<== #[compound-procedure 3 fast-fib]
Args: 2
3
3
3]
[3

103

Faster Fibonacci (cont.)

; (fast-fib pl p2 i n) returns the nth Fibonacci number
; Pre: n>=0 is an integer, 0<=i<=n is an integer,
; pl is the (i-1)th Fib number (or O if i is 0), and
; P2 is the ith Fib number.
(define fast-fib
(lambda (p1 p2 i n)
(if (=i n)
p2
(fast-fib p2 (+ p1 p2) (+ i 1) n))

; (fib n) returns the nth Fibonacci number
; Pre: n is a non-negative integer
(define fib
(lambda (n)
(fast-fib 0 1 0 n)
)

Time complexity of this fib procedure is linear!
Lesson: Accumulators are useful for writing

efficient code. (e.g., factorial, reverse, etc.)
102

<== #[compound-procedure 3 fast-fib]

Args: 1
2
2
3]
[3
<== #[compound-procedure 3 fast-fib]
Args: 1
1
1
3]
[3
<== #[compound-procedure 3 fast-fib]
Args: 0
1
0
3]
[3
<== #[compound-procedure 2 fib]
Args: 3]
;Value: 3

Other Useful Scheme: Strings

Sequences of characters.
Written within double quotes, e.g., " hi mom”

Useful string predicate procedures:

(string=? <stringl> <string2> ...)
(string<? <stringl> <string2> ...)
(string<=? ...

etc.

Case-insensitive versions:

(string-ci=? <stringl> <string2> ...)
(string-ci<? <stringl> <string2> ...)
(string-ci<=7 ...

Other string procedures:

(string-length <string>)
(string->symbol <string>)
(symbol->string <symbol>)
(string->list <string>)
(list->string <list>)

104

Syntactic Forms

if, begin, or, and are useful syntactic forms.

They have lazy evaluation, i.e., their subexpressions are
not evaluated until required.

Let's look at lazy evaluation and how to exploit it.

(if (=n 0)
(display "oops")
(/ 1 n))

if is evaluated left to right. The "else part” is only
evaluated as necessary, so (/ 1 n) is only evaluated if
the conditional expression is false.

Imagine if if were implemented as a procedure. We'd
be in trouble!

(begin
(display "this is line 1 of the message")
(display "this is line 2 of the message")
#£

begin evaluates it subexpressions from left to right and
returns the value of the last subexpression.

106

Other Useful Scheme Procedures

Input and Output

(read ...) ; reads and returns an expression
(read-char ...) ; reads & returns a character
(peek-char ...) ; returns next avail char w/o updating
(char-ready? ...) ; returns #t if char has been entered
(write-char ...) ; outputs a single character

(write <object> ...) ; outputs the object

(display <object> ...) ; outputs the object (pretty)
(newline) ; outputs end-of-line

;5 Display a number of objects, with a space between each.
(define display-all
(lambda 1st
(cond ((null? 1st) ()
((null? (cdr 1st)) (display (car 1st)))
(else (display (car 1st)) (display " ")
(apply display-all (cdr 1st))))

)

(define 1st (a b ¢ d))
(display-all "List: " 1lst "\n") ; List (a b ¢ d) <cr>
(apply display-all 1lst) ;abcd

Reading/writing files

(open-input-file)
(open-output-file)

105

Syntactic Forms (cont.)

(or) => #£

(or (=01) (=02) (=00)) =>#t

(or #£f) => #f

(or #f #t) => #t

(or #f ’a #f) => a (treated as #t in a conditional)

or evaluates its subexpressions from left to right until
either (a) one expression is true, or (b) no more expres-
sions are left. In case (a), the value is true, in (b) the
value is false.

Important subtlety: Every Scheme object is considered
to be either true or false by conditional experssions and
by the procedure not. Only #f (i.e., ()) is considered
false; all other objects are considered true.

(and) => #t

(and (= 00) (=0 1) (=0 2)) => #f

(and #f) => #f

(and #t #t) => #t

(and #t #f) => #f

(and ’a ’b ’c) => ¢ (treated as #t in a conditional)

and evaluates its subexpressions from left to right until
(a) one expression is false, or (b) no more expressions
are left. In case (a), the value is false, in (b) the value
is true.

107

Clever Exploitation of Syntactic
Forms and Lazy Evaluation

(define (validate-bindings expr bindings)
(cond ((...) ...)
C...) ..
((symbol? expr)
(debug-display "Symbol:" expr)
(or (get-binding expr bindings)
(builtin? expr)
(begin
(display-error ’umbound expr)
#f

etc.

)

As soon as one of the conditions in the or statement
is true, Scheme stops evaluating. This can be used to
advantage. Similarly with and and evaluation to false.

108

