Lambda EXxpressions

We have often been defining procedures using the short-
hand:

(define (square x)

(* x x))

But recall that this is just shorhand for binding the vari-
able square to the lambda expression (* x x).

(define square
(lambda (x)
(* x x)

)

It is often very useful to define procedures without nam-
ing them. These anonymous procedures can be passed
as arguments, returned as arguments, bound to local
variable names using let, etc. We will see further appli-

cations later when we cover higher-order procedures.

60



Lambda EXxpressions Examples

Establishing a procedure as the value of a local variable.

(let ((square-it (lambda (x) (* x x))))
(1ist (square-it (+ 1 3))
(square-it (* 2 5))
(square-it 7))) => (16 100 49)

square-it is defined only within the scope of the 1let
statement.

Recall that procedures can have multiple arguments,
and that we can even have procedures as arguments
to procedures.

(let ((double-any (lambda (f x) (f x x))))
(1ist (double-any + 25)
(double-any cons ’a))) => (100 (a.a))

Dybvig §2.5 is a good reference to this material (avail-
able online). I strongly recommend that you read it.

§4.2 may also be useful.

61



Lambda Expressions Examples
(cont.)

The following examples are taken from Dybvig §2.5:

(let ((x ’a))
(let ((f (lambda (y) (1list x y))))
(f ’b))) returns (a b)

Note that x is bound in the outer 1et. It is a free variable
in the lambda expression. A variable that occurs free in
a lambda expression should be bound by an enclosing
lambda or let expression, unless the variable is (like the
names of primitive procedures) bound at top level, as
we discuss in the following section.

(let ((£f (let ((x ’a))
(lambda (y) (cons x y)))))
(let ((x ’i-am-not-a))

(f ’b))) (a . b)

In both cases, the value of x within the procedure named
fis a.

Interestingly, a let expression is just an application of
a lambda expression to a set of argument expressions.
I.e., the following two expressions are equivalent:

(let ((x ’a))
(cons x x))

((lambda (x) (cons x x))
)a)

62



