Lists Revisited

Recall the Cons Cell Representation:

The pairor cons cell is the most fundamental of Scheme’s
structured object types.

A list is a sequence of pairs; each pair’'s cdr is the next
pair in the sequence.

The cdr of the last pair in a proper list is the empty
list. Otherwise the sequence of pairs forms an improper
list. I.e., an empty list is a proper list, and and any pair
whose cdr is a proper list is a proper list.

An improper list is printed in dotted-pair notation with
a period (dot) preceding the final element of the list. A
pair whose cdr is not a list is often called a dotted pair
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Testing for Equality

e (eq? a b): Returns #t iff a and b are the
same Scheme object. (Don’t use eq? with
numbers!)

e (= a b): Returns #t iff a and b are numeri-
cally equal. Pre: a and b must evaluate to
numbers.

e (eqv? a b): Similar to eq?, but works for
numbers and characters. More expensive
than eq?, however.

e (equal? a b): Returns #t iff a and b have
the same structure and contents. Thus, equal?
recursively tests for equality. The most ex-
pensive equality predicate.

Recommended Reading:
Dybvig §6.1, 2nd ed. (available online), or
Dybvig §6.2, 3rd ed.
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Creating lists

quote: ’(1 (2 3) ) => (1 (23) O)
or (quote (1 (2 3) O))) => (1 (2 3) O)

list: (List 1 (2 3) O) => (1 (2 3) O))

cons: Build it, piece by piece.
(cons 1 (cons (cons 2 (cons 3 ()))

(cons O 0O)))

append: Appending lists
(append °(1) °(4 5)) => (1 4 5)

cons vs. list: The procedure cons actually builds pairs,
and there is no reason that the cdr of a pair must be a
list.

The procedure list is similar to cons, except that it
takes an arbitrary number of arguments and always builds
a proper list.

E.g., (1ist ’a ’b ’c) — (a b ¢)
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Testing for Equality (cont.)

The eq? predicate doesn't work for lists.

Why not?

1. (cons ’a ’()) makes a new list

2. (cons ’a ’()) makes a(nother) new list

3. eq? checks if its two args are the same

4. (eq? (coms ’a ’()) (coms ’a ’())) evaluates
to O (ie, #f)

Lists are stored as pointers to the first element
(car) and the rest of the list (cdr).

Symbols are stored uniquely, so eq? works on
them.
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Equality Checking for Lists

For lists, need a comparison procedure to check
for the same structure in two lists. How might
you write such a procedure?

(define (myequal? x y)
(or (and (atom? x) (atom? y) (eq? x y))
(and (not (atom? x)) (mot (atom? y))
(myequal? (car x) (car y))
(myequal? (cdr x) (cdr y)))))
(equal? ’a ’a) evaluates to #t
(equal? ’a ’b) evaluates to ()
(equal? ’(a) ’(a)) evaluates to #t
(equal? ’((a)) ’(a)) evaluates to ()

Does this really work? Hint: atoms are num-
bers, does this work for numbers? Play around
with it and with the built-in predicate proce-
dure equal?.

53

Other Useful Predicates

Recursive Procedures: Counting

(define (atomcount x)
(cond ((null? x) 0)
((atom? x) 1)
(else (+ (atomcount (car x))
(atomcount (cdr x))))))

e (atomcount ’(1 2)) = 2
e (atomcount ’(1 (2 (3)) (5))) = 4:

(at 7 (1 (2 (3)) (5)))
(+ (at 1) (at ((2 (3)) (5))))

(+ 1 (+ (at (2 (3))) (at ((BI)I))

(+ 1 (+ (+ (at 2) (at ((3)))) (+ (at (B)) (at ()))))

(+1 (+ (+1 (+ (at (3)) (at O))) (+ (+ (at B) (at ())) 0)))
(+1 (+ (+1 (+ (+(at 3) (at O)) 0)) (+ (+10) OON
F1GHE1TEGE100)) (+1 0

+1(+ (+1H10) 1)

(+1 (+ (+11) 1)

(+1 (+21))

(+1 3)

4

This is called “car-cdr-recursion.’
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e (null? a): Returns #t iff a is the empty list
(or #£, depending on the implementation).

e (pair? a): Returns #t iff a is a pair, i.e., a
cons cell.

e (number? a): Returns #t iff a is a number.

e (min list): Returns the minimum of a list
of numbers.

e (max list): Returns the maximum of a list
of numbers.

e (even? a): Returns #t iff a is even.

Lots more in Dybvig §6.
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Efficiency Issues

Problem: Evaluating the same expression twice.
Example:
(define (longest-nonzero x y)
(cond ((and (null? x) (null? y)) -1)
((> (length x) (length y))
(length x))
(else (length y))

))

What can you do if there is no assignment
statement?
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Efficiency Issues

Solution 1: Bind values to parameters in a
helper procedure.

(define (maximum x y)
(cond ((> x y) x)
(else y)
)

(define (longest-nonzero x y)
(cond ((and (null? x) (null? y)) -1)
(else
(maximum (length x) (length y)))
))

Note: There is a built-in max function.
Note 2: Helper procedures are an important

and useful tool!
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Let and let* Example

(define a 100) (define b 200) (define c 300)

(let ((a 5)
(b (+ a a))
(c (+ ab)))
(list a b ¢)
)

What does this return? What are a, b, ¢ bound to
now? (Answer: still 100, 200, 300)

(letx ((a 5)
(b (+ a a))
(c (+ ab)))
(list a b ¢)
)

What does this return?
Note that let* can be simulated by nested lets.

(let ((a 5))
(let ((b (+ a a)))
(et ((c (+ a b))
(list a b ¢)
)
)
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Efficiency Issues

Solution 2: Use a let or let* construct, to create local
variables and to bind them to expression results. The
scope of these variables is limited to the scope of the
let statement.

(let ((varl exprl)
i;;rn exprn))

body
)

The variables can only be used within the body of the
let.

Evaluation: exprl, ... exprn are evaluated in some un-
defined order, saved, and then assigned to varl,..varn.
In our interpreter, they have the appearance of being
evaluated in parallel.

(let* ((varl expril)

(varn exprn))

body
)
Again, the variables can only be used within the body
of let*,
Evaluation: evaluation and binding is sequential, i.e.,
the evaluation of expri is bound to vari, the evaluation
of expr2 is then bound to var2, etc.
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Structured Data - Binary Search
Trees

Nested lists can be used to define a variety of data struc-
tures.

E.g., A complete binary tree can be represented as a list
with 3 elements: (root left-subtree right-subtree)

1 1=> (define mytree
‘(dog (bird (aardvark () () (cat () O))

(possum (frog (O ) (wolf O ())))

;Value: mytree

1 1=> mytree
;Value 1: (dog (bird (aardvark () ()) (cat (O ()))

(possum (frog O ) (wolf O (O)))

1 ]=> (car mytree)
;Value: dog

1 1=> (car (cdr mytree))
;Value 2: (bird (aardvark () ()) (cat OO O))
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Binary Search Trees (cont.)

1 ]=> (define empty-tree?
(lambda (tree) (null? tree)))
;Value: empty-tree?

1 ]=> (define left-tree
(lambda (tree)
(if (empty-tree? tree) ‘Error
(cadr tree))))
;Value: left-tree

1 1=> (left-tree mytree)
;Value 2: (bird (aardvark () ()) (cat O O))

1 ]=> (define right-tree
(lambda (tree)
(if (empty-tree? tree) ‘Error
(caddr tree))))
;Value: right-tree

1 1=> (right-tree mytree)
;Value 3: (possum (frog () ()) (wolf (O O))
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Binary Search Tree (cont.)

1 ]=> (define pre-order
(lambda (tree)
(if (null? tree) °Q)
(cons (root-tree tree)
(append (pre-order (left-tree tree))

(pre-order (right-tree tree))

2))))

;Value: pre-order

1 ]=> (pre-order mytree)
;Value 4: (dog bird aardvark cat possum frog wolf)

1 1=> (define in-order
(lambda (tree)
(if (null? tree) ’()
(append (in-order (left-tree tree))
(cons (root-tree tree)
(in-order (right-tree tree))
NN

;Value: in-order

1 1=> (in-order mytree)
;Value 5: (aardvark bird cat dog frog possum wolf)
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Binary Search Tree (cont.)

1 ]=> (define root-tree
(lambda (tree)
(if (empty-tree? tree) ‘Error
(car tree))))
;Value: root-tree

1 1=> (root-tree mytree)
;Value: dog

1 ]=> (define contains?
(lambda (tree sym)
(cond ((empty-tree? tree) ())
((equal? (root-tree tree) sym) #t)
(else (or (contains? (left-tree tree) sym)
(contains? (right-tree tree) sym)
)

;Value: contains?

1 1=> (contains? mytree ‘aardvark)
;Value: #t

1 ]=> (contains? mytree ‘elephant)
;Value: ()
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Polymorphic and Monomorphic
Functions

e Polymorphic functions can be applied to
arguments of many forms

e The function length is polymorphic: it works
on lists of numbers, lists of symbols, lists
of lists, lists of anything

e The function square is monomorphic: it
only works on numbers
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Higher-Order Procedures

Procedures as input values:

(define (all-num 1st)
(or (null? 1st)
(and (number? (car 1lst))
(all-num (cdr 1st))))
)
(define (all-num-f f 1st)
(cond ((all-num 1lst) (f 1lst))
(else ’error))
)
1 1=> (all-num-f abs-list ’(1 -2 3))
;Value 1: (1 2 3)

1 ]=> (all-num-f abs-list ’(1 a))

;Value: error
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Built-In Higher-Order Procedures:
map

There is a built-in procedure map. Let's define
our own restricted version first....

(define (mymap f 1)
(cond ((null? 1) ’(Q))
(else (cons (f (car 1))
(mymap £ (cdr 1))))
)

e mymap takes two arguments: a function and
a list

e mymap builds a new list whose elements are
the result of applying the function to each
element of the (old) list
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Higher-Order Procedures

Procedures as returned values:

(define (plus-list x)
(cond ((number? x)
(lambda (y) (+ (sum-n x) y)))
((list? x)
(lambda (y) (+ (sum-list x) y)))
(else (lambda (x) x))

)
1 1=> ((plus-list 3) 4)
;Value: 10

1 1=> ((plus-list (1 3 5)) 5)
;Value: 14
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Higher-order Procedures: map

e Example:

(mymap abs ’(-1 2 -3 4)) =
(1234)

(mymap (lambda (x) (+ 1 x)) ’(-1 2 -3)) =
(0 3 -2)

e The built-in map will produce the same re-
sults, but note that the built-in map can
take more than two arguments:

(map cons ’(a b c) ’((1) (2) (3))) =
((a 1) (®2) (c 3))
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What’s Wrong Here??

1 1=>
(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else (+ (map atomcount s)))
))

;Value: atomcount
1 ]=> (atomcount ’(a b))

;The object (1 1), passed as an argument
;to +, is not the correct type.

2 error>

Why doesn’t this work?
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Using eval to Correct the Problem

Limitations of Using eval

BUT: eval only works in the current defini-
tion of atomcount because numbers evaluate to
themselves.

11=>(+123)
;Value: 6

1 1=> (cons ’+ (1 2 3))
;Value 12: (+ 1 2 3)

1 J=> (eval (cons °’+ (1 2 3)) Q)
;Value: 6
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(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else
(eval
(cons ’+ (map atomcount s)) ’()))

))
1 ]=> (atomcount ’(a b))
;Value: 2

1 1=> (atomcount ’((1) (2 3 (4)) ((((5))))))

;Value: 5
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Using eval to Evaluate Expressions

1 ]=> (append ’(a) ’(b))

;Value 13: (a b)

1 1=> (cons ’append ’((a) (b)))
;Value 14: (append (a) (b))

1 1=> (eval (cons ’append ’((a) (®))) ’0))
;Unbound variable: b

1 1=> (cons ’append ’( ’(a) ’(b) ))
;Value 15: (append (quote (a)) (quote (b)))

1 1=> (eval

(cons ’append ’( ’(a) ’(b))) *0))
;Value 16: (a b)

Too complicated!!
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Applying Procedures with apply

Higher-order Procedures: my-reduce

1 1=> (apply + ’(1 2 3))
;Value: 6

1 1=> (apply append ’((a) (b)))
;Value 5: (a b)

11=>
(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else
(apply + (map atomcount s)))))

;Value: atomcount

1 ]=> (atomcount ’(a (b) c))
;Value: 3
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Higher-order Procedures: my-reduce

(my-reduce + °(1 2 3) 0) = 6:

(my-reduce + (1 2 3) 0)

(+ 1 (my-reduce + ’(2 3) 0))

(+ 1 (+ 2 (my-reduce + ’(3) 0)))

(+ 1 (+ 2 (+ 3 (my-reduce + ’() 0))))
(+1 (+2 (+30))

6

Note: (+ 12 3) = 6

(my-reduce / ’(24 6 2) 1) = 8:

(my-reduce / (24 6 2) 1)

(/ 24 (my-reduce / ’(6 2) 1))

(/ 24 (/ 6 (my-reduce / °(2) 1)))

(/ 24 (/ 6 (/ 2 (my-reduce / *() 1))))
(/24 (/6 (/21)))

8

Note: (/ 24 6 2) = 2
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(define (my-reduce op 1 id)
(if (null? 1)
id
(op (car 1)
(my-reduce op (cdr 1) id))
))

A binary — n-ary procedure.
The my-reduce procedure takes a binary oper-
ation and applies it right-associatively to a list

of an arbitrary number of arguments.

NOTE: my-reduce is not equivalent to apply.
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Higher-order Procedures: my-reduce

Given union, which takes two lists representing
sets and returns their union:

1 1=> (apply union ’((1 3)(2 3 4)))
;Value 21: (1 2 3 4)

1 1=> (apply union ’((1 3)(2 3)(4 5)))
;The procedure #[compound-procedure union]
;has been called with 3 arguments;

;it requires exactly 2 arguments.

1 1=> (reduce union ’((1 3)(2 3)(4 5)) °O)
;Value 22: (1 2 3 4 5)

Question: How would you have to change
my-reduce to be able to take intersection as
its function argument?
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Important

Note that Scheme has a built-in higher-order

procedure reduce that is different from my-reduce.

You may use my-reduce in assignments and tests.
In assignments, you would of course have to
define it by copying the code provided here. In
tests, you may use it without defining it.
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Example Practice Procedures

cdrLists: given a list of lists, form new list
giving all elements of the cdr’'s of the sub-
lists.

((12)(345)(6)) =>(245)

swapFirstTwo: given a list, swap the first
two elements of the list.
(1234)=(2134)

swap TwolnLists: given a list of lists, form
new list of all elements in all lists, with first
two of each swapped.

((123)(4)(56)) =>(213465)

addSums: given a list of numbers, sum the
total of all sums from 0 to each number.
(135) = 22
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