Lists Revisited

Recall the Cons Cell Representation:

The pairor cons cell is the most fundamental of Scheme’s
structured object types.

A list is a sequence of pairs; each pair’'s cdr is the next
pair in the sequence.

The cdr of the last pair in a proper list is the empty
list. Otherwise the sequence of pairs forms an improper
list. I.e., an empty list is a proper list, and and any pair
whose cdr is a proper list is a proper list.

An improper list is printed in dotted-pair notation with
a period (dot) preceding the final element of the list. A
pair whose cdr is not a list is often called a dotted pair

49

Testing for Equality

e (eq? a b): Returns #t iff a and b are the
same Scheme object. (Don’t use eq? with
numbers!)

e (= a b): Returns #t iff a and b are numeri-
cally equal. Pre: a and b must evaluate to
numbers.

e (eqv? a b): Similar to eq?, but works for
numbers and characters. More expensive
than eq?, however.

e (equal? a b): Returns #t iff a and b have
the same structure and contents. Thus, equal?
recursively tests for equality. The most ex-
pensive equality predicate.

Recommended Reading:
Dybvig §6.1, 2nd ed. (available online), or
Dybvig §6.2, 3rd ed.

51

Creating lists

quote: ’(1 (2 3)) => (1 (23) O)
or (quote (1 (2 3) O))) => (1 (2 3) O)

list: (List 1 (2 3) O) => (1 (2 3) O))

cons: Build it, piece by piece.
(cons 1 (cons (cons 2 (cons 3 ()))

(cons O 0O)))

append: Appending lists
(append °(1) °(4 5)) => (1 4 5)

cons vs. list: The procedure cons actually builds pairs,
and there is no reason that the cdr of a pair must be a
list.

The procedure list is similar to cons, except that it
takes an arbitrary number of arguments and always builds
a proper list.

E.g., (1ist ’a ’b ’c) — (a b ¢)

50

Testing for Equality (cont.)

The eq? predicate doesn't work for lists.

Why not?

1. (cons ’a ’()) makes a new list

2. (cons ’a ’()) makes a(nother) new list

3. eq? checks if its two args are the same

4. (eq? (coms ’a ’()) (coms ’a ’())) evaluates
to O (ie, #f)

Lists are stored as pointers to the first element
(car) and the rest of the list (cdr).

Symbols are stored uniquely, so eq? works on
them.
52

Equality Checking for Lists

For lists, need a comparison procedure to check
for the same structure in two lists. How might
you write such a procedure?

(define (myequal? x y)
(or (and (atom? x) (atom? y) (eq? x y))
(and (not (atom? x)) (mot (atom? y))
(myequal? (car x) (car y))
(myequal? (cdr x) (cdr y)))))
(equal? ’a ’a) evaluates to #t
(equal? ’a ’b) evaluates to ()
(equal? ’(a) ’(a)) evaluates to #t
(equal? ’((a)) ’(a)) evaluates to ()

Does this really work? Hint: atoms are num-
bers, does this work for numbers? Play around
with it and with the built-in predicate proce-
dure equal?.

53

Other Useful Predicates

Recursive Procedures: Counting

(define (atomcount x)
(cond ((null? x) 0)
((atom? x) 1)
(else (+ (atomcount (car x))
(atomcount (cdr x))))))

e (atomcount ’(1 2)) = 2
e (atomcount ’(1 (2 (3)) (5))) = 4:

(at 7 (1 (2 (3)) (5)))
(+ (at 1) (at ((2 (3)) (5))))

(+ 1 (+ (at (2 (3))) (at ((BI)I))

(+ 1 (+ (+ (at 2) (at ((3)))) (+ (at (B)) (at ()))))

(+1 (+ (+1 (+ (at (3)) (at O))) (+ (+ (at B) (at ())) 0)))
(+1 (+ (+1 (+ (+(at 3) (at O)) 0)) (+ (+10) OON
F1GHE1TEGE100)) (+1 0

+1(+ (+1H10) 1)

(+1 (+ (+11) 1)

(+1 (+21))

(+1 3)

4

This is called “car-cdr-recursion.’
55

e (null? a): Returns #t iff a is the empty list
(or #£, depending on the implementation).

e (pair? a): Returns #t iff a is a pair, i.e., a
cons cell.

e (number? a): Returns #t iff a is a number.

e (min list): Returns the minimum of a list
of numbers.

e (max list): Returns the maximum of a list
of numbers.

e (even? a): Returns #t iff a is even.

Lots more in Dybvig §6.

54

Efficiency Issues

Problem: Evaluating the same expression twice.
Example:
(define (longest-nonzero x y)
(cond ((and (null? x) (null? y)) -1)
((> (length x) (length y))
(length x))
(else (length y))

))

What can you do if there is no assignment
statement?

56

Efficiency Issues

Solution 1: Bind values to parameters in a
helper procedure.

(define (maximum x y)
(cond ((> x y) x)
(else y)
)

(define (longest-nonzero x y)
(cond ((and (null? x) (null? y)) -1)
(else
(maximum (length x) (length y)))
))

Note: There is a built-in max function.
Note 2: Helper procedures are an important

and useful tool!
57

Let and let* Example

(define a 100) (define b 200) (define c 300)

(let ((a 5)
(b (+ a a))
(c (+ ab)))
(list a b ¢)
)

What does this return? What are a, b, ¢ bound to
now? (Answer: still 100, 200, 300)

(letx ((a 5)
(b (+ a a))
(c (+ ab)))
(list a b ¢)
)

What does this return?
Note that let* can be simulated by nested lets.

(let ((a 5))
(let ((b (+ a a)))
(et ((c (+ a b))
(list a b ¢)
)
)

59

Efficiency Issues

Solution 2: Use a let or let* construct, to create local
variables and to bind them to expression results. The
scope of these variables is limited to the scope of the
let statement.

(let ((varl exprl)
i;;rn exprn))

body
)

The variables can only be used within the body of the
let.

Evaluation: exprl, ... exprn are evaluated in some un-
defined order, saved, and then assigned to varl,..varn.
In our interpreter, they have the appearance of being
evaluated in parallel.

(let* ((varl expril)

(varn exprn))

body
)
Again, the variables can only be used within the body
of let*,
Evaluation: evaluation and binding is sequential, i.e.,
the evaluation of expri is bound to vari, the evaluation
of expr2 is then bound to var2, etc.

58

Structured Data - Binary Search
Trees

Nested lists can be used to define a variety of data struc-
tures.

E.g., A complete binary tree can be represented as a list
with 3 elements: (root left-subtree right-subtree)

1 1=> (define mytree
‘(dog (bird (aardvark () () (cat () O))

(possum (frog (O) (wolf O ())))

;Value: mytree

1 1=> mytree
;Value 1: (dog (bird (aardvark () ()) (cat (O ()))

(possum (frog O) (wolf O (O)))

1]=> (car mytree)
;Value: dog

1 1=> (car (cdr mytree))
;Value 2: (bird (aardvark () ()) (cat OO O))

60

Binary Search Trees (cont.)

1]=> (define empty-tree?
(lambda (tree) (null? tree)))
;Value: empty-tree?

1]=> (define left-tree
(lambda (tree)
(if (empty-tree? tree) ‘Error
(cadr tree))))
;Value: left-tree

1 1=> (left-tree mytree)
;Value 2: (bird (aardvark () ()) (cat O O))

1]=> (define right-tree
(lambda (tree)
(if (empty-tree? tree) ‘Error
(caddr tree))))
;Value: right-tree

1 1=> (right-tree mytree)
;Value 3: (possum (frog () ()) (wolf (O O))

61

Binary Search Tree (cont.)

1]=> (define pre-order
(lambda (tree)
(if (null? tree) °Q)
(cons (root-tree tree)
(append (pre-order (left-tree tree))

(pre-order (right-tree tree))

2))))

;Value: pre-order

1]=> (pre-order mytree)
;Value 4: (dog bird aardvark cat possum frog wolf)

1 1=> (define in-order
(lambda (tree)
(if (null? tree) ’()
(append (in-order (left-tree tree))
(cons (root-tree tree)
(in-order (right-tree tree))
NN

;Value: in-order

1 1=> (in-order mytree)
;Value 5: (aardvark bird cat dog frog possum wolf)

63

Binary Search Tree (cont.)

1]=> (define root-tree
(lambda (tree)
(if (empty-tree? tree) ‘Error
(car tree))))
;Value: root-tree

1 1=> (root-tree mytree)
;Value: dog

1]=> (define contains?
(lambda (tree sym)
(cond ((empty-tree? tree) ())
((equal? (root-tree tree) sym) #t)
(else (or (contains? (left-tree tree) sym)
(contains? (right-tree tree) sym)
)

;Value: contains?

1 1=> (contains? mytree ‘aardvark)
;Value: #t

1]=> (contains? mytree ‘elephant)
;Value: ()

62

Polymorphic and Monomorphic
Functions

e Polymorphic functions can be applied to
arguments of many forms

e The function length is polymorphic: it works
on lists of numbers, lists of symbols, lists
of lists, lists of anything

e The function square is monomorphic: it
only works on numbers

64

Higher-Order Procedures

Procedures as input values:

(define (all-num 1st)
(or (null? 1st)
(and (number? (car 1lst))
(all-num (cdr 1st))))
)
(define (all-num-f f 1st)
(cond ((all-num 1lst) (f 1lst))
(else ’error))
)
1 1=> (all-num-f abs-list ’(1 -2 3))
;Value 1: (1 2 3)

1]=> (all-num-f abs-list ’(1 a))

;Value: error

65

Built-In Higher-Order Procedures:
map

There is a built-in procedure map. Let's define
our own restricted version first....

(define (mymap f 1)
(cond ((null? 1) ’(Q))
(else (cons (f (car 1))
(mymap £ (cdr 1))))
)

e mymap takes two arguments: a function and
a list

e mymap builds a new list whose elements are
the result of applying the function to each
element of the (old) list

67

Higher-Order Procedures

Procedures as returned values:

(define (plus-list x)
(cond ((number? x)
(lambda (y) (+ (sum-n x) y)))
((list? x)
(lambda (y) (+ (sum-list x) y)))
(else (lambda (x) x))

)
1 1=> ((plus-list 3) 4)
;Value: 10

1 1=> ((plus-list (1 3 5)) 5)
;Value: 14

66

Higher-order Procedures: map

e Example:

(mymap abs ’(-1 2 -3 4)) =
(1234)

(mymap (lambda (x) (+ 1 x)) ’(-1 2 -3)) =
(0 3 -2)

e The built-in map will produce the same re-
sults, but note that the built-in map can
take more than two arguments:

(map cons ’(a b c) ’((1) (2) (3))) =
((a 1) (®2) (c 3))

68

What’s Wrong Here??

1 1=>
(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else (+ (map atomcount s)))
))

;Value: atomcount
1]=> (atomcount ’(a b))

;The object (1 1), passed as an argument
;to +, is not the correct type.

2 error>

Why doesn’t this work?

69

Using eval to Correct the Problem

Limitations of Using eval

BUT: eval only works in the current defini-
tion of atomcount because numbers evaluate to
themselves.

11=>(+123)
;Value: 6

1 1=> (cons ’+ (1 2 3))
;Value 12: (+ 1 2 3)

1 J=> (eval (cons °’+ (1 2 3)) Q)
;Value: 6

71

(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else
(eval
(cons ’+ (map atomcount s)) ’()))

))
1]=> (atomcount ’(a b))
;Value: 2

1 1=> (atomcount ’((1) (2 3 (4)) ((((5))))))

;Value: 5

70

Using eval to Evaluate Expressions

1]=> (append ’(a) ’(b))

;Value 13: (a b)

1 1=> (cons ’append ’((a) (b)))
;Value 14: (append (a) (b))

1 1=> (eval (cons ’append ’((a) (®))) ’0))
;Unbound variable: b

1 1=> (cons ’append ’(’(a) ’(b)))
;Value 15: (append (quote (a)) (quote (b)))

1 1=> (eval

(cons ’append ’(’(a) ’(b))) *0))
;Value 16: (a b)

Too complicated!!

72

Applying Procedures with apply

Higher-order Procedures: my-reduce

1 1=> (apply + ’(1 2 3))
;Value: 6

1 1=> (apply append ’((a) (b)))
;Value 5: (a b)

11=>
(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else
(apply + (map atomcount s)))))

;Value: atomcount

1]=> (atomcount ’(a (b) c))
;Value: 3

73

Higher-order Procedures: my-reduce

(my-reduce + °(1 2 3) 0) = 6:

(my-reduce + (1 2 3) 0)

(+ 1 (my-reduce + ’(2 3) 0))

(+ 1 (+ 2 (my-reduce + ’(3) 0)))

(+ 1 (+ 2 (+ 3 (my-reduce + ’() 0))))
(+1 (+2 (+30))

6

Note: (+ 12 3) = 6

(my-reduce / ’(24 6 2) 1) = 8:

(my-reduce / (24 6 2) 1)

(/ 24 (my-reduce / ’(6 2) 1))

(/ 24 (/ 6 (my-reduce / °(2) 1)))

(/ 24 (/ 6 (/ 2 (my-reduce / *() 1))))
(/24 (/6 (/21)))

8

Note: (/ 24 6 2) = 2

75

(define (my-reduce op 1 id)
(if (null? 1)
id
(op (car 1)
(my-reduce op (cdr 1) id))
))

A binary — n-ary procedure.
The my-reduce procedure takes a binary oper-
ation and applies it right-associatively to a list

of an arbitrary number of arguments.

NOTE: my-reduce is not equivalent to apply.

74

Higher-order Procedures: my-reduce

Given union, which takes two lists representing
sets and returns their union:

1 1=> (apply union ’((1 3)(2 3 4)))
;Value 21: (1 2 3 4)

1 1=> (apply union ’((1 3)(2 3)(4 5)))
;The procedure #[compound-procedure union]
;has been called with 3 arguments;

;it requires exactly 2 arguments.

1 1=> (reduce union ’((1 3)(2 3)(4 5)) °O)
;Value 22: (1 2 3 4 5)

Question: How would you have to change
my-reduce to be able to take intersection as
its function argument?

76

Important

Note that Scheme has a built-in higher-order

procedure reduce that is different from my-reduce.

You may use my-reduce in assignments and tests.
In assignments, you would of course have to
define it by copying the code provided here. In
tests, you may use it without defining it.

77

Example Practice Procedures

cdrLists: given a list of lists, form new list
giving all elements of the cdr’'s of the sub-
lists.

((12)(345)(6)) =>(245)

swapFirstTwo: given a list, swap the first
two elements of the list.
(1234)=(2134)

swap TwolnLists: given a list of lists, form
new list of all elements in all lists, with first
two of each swapped.

((123)(4)(56)) =>(213465)

addSums: given a list of numbers, sum the
total of all sums from 0 to each number.
(135) = 22

78

