Lists Reuvisited

Recall the Cons Cell Representation:

The pairor cons cell is the most fundamental of Scheme’s
structured object types.

A list is a sequence of pairs; each pair's cdr is the next
pair in the sequence.

The cdr of the last pair in a proper list is the empty
list. Otherwise the sequence of pairs forms an improper
list. L.e., an empty list is a proper list, and and any pair
whose cdr is a proper list is a proper list.

An improper list is printed in dotted-pair notation with

a period (dot) preceding the final element of the list. A
pair whose cdr is not a list is often called a dotted pair

49

Equality Checking for Lists

For lists, need a comparison procedure to check
for the same structure in two lists. How might
you write such a procedure?

(define (myequal? x y)
(or (and (atom? x) (atom? y) (eq? x y))
(and (not (atom? x)) (nmot (atom? y))
(myequal? (car x) (car y))
(myequal? (cdr x) (cdr y)))))
e (equal? ’a ’a) evaluates to #t
(equal? ’a ’b) evaluates to ()
(equal? ’(a) ’(a)) evaluates to #t
e (equal? ’((a)) ’(a)) evaluates to)

Does this really work? Hint: atoms are num-
bers, does this work for numbers? Play around
with it and with the built-in predicate proce-
dure equal?.

53

Creating lists

quote: ’(1 (2 3)) => (1 (23) ()
or (quote (1 (2 3) (3)) => (1 (23) ())

list: (Qist 1 °(2 3) O) => (1 (2. 3) O

cons: Build it, piece by piece.
(cons 1 (cons (cons 2 (cons 3 (}))

(cons O O

append: Appending lists
(append 1st (4 5)) => ((1 (2 3) O 4 5))
cons vs. list: The procedure cons actually builds pairs,

and there is no reason that the cdr of a pair must be a
list.

The procedure list is similar to cons, except that it
takes an arbitrary number of arguments and always builds
a proper list.

E.g., (list ’a ’b ’c) — (a b c)

50

Other Useful Predicates

(null? a): Returns #t iff a is the empty list
(or #f, depending on the implementation).
(pair? a): Returns #t iff a is a pair, i.e., a
cons cell.

(number? a): Returns #t iff a is @ number.
(min list): Returns the minimum of a list
of numbers.

(max list): Returns the maximum of a list
of numbers.

(even? a): Returns #t iff a is even.

Lots more in Dybvig §6.

54

Testing for Equality

(eq? a b): Returns #t iff a and b are the
same Scheme object. (Don't use eq? with
numbers!)

(= a b): Returns #t iff a and b are numeri-
cally equal. Pre: a and b must evaluate to
numbers.

(eqv? a b): Similar to eq?, but works for
numbers and characters. More expensive
than eq?, however.

(equal? a b): Returns #t iff a and b have
the same structure and contents. Thus, equal?
recursively tests for equality. The most ex-
pensive equality predicate.

Recommended Reading:
Dybvig §6.1, 2nd ed. (available online), or
Dybvig §6.2, 3rd ed.
51

Recursive Procedures: Counting

(define (atomcount x)
(cond ((null? x) 0)
((atom? x) 1)
(else (+ (atomcount (car x))
(atomcount (cdr x))))))

e (atomcount ’(1 2)) = 2
e (atomcount ’(1 (2 (3)) (5))) = 4:

(at "(1 (2 (3)) (8)))
(+ (at 1) (at ((2 (3)) (8))))

(+ 1 (+ (at (2 (3))) (at (B

(+ 1 (+ (+ (at 2) (at ((3)))) (+ (at (5)) (at ()))))

(+1 (+ (+ 1 (+ (at (3) (at O)) (+ (+ (at 5) (at ())) 0)))
(+ 1 (+ (+ 1 (+ (+ (at 3) (at ())) 0)) (+ (+ 1 0) 0)))

1 (+ (+1(+ (10 0) (+1 0

(+1 (+ (+1(+10)) 1))

(+1 (+ (+11) 1))

(+ 1 (+21))

(+13)

This is called “car-cdr-recursion.’
55

Testing for Equality (cont.)

The eq? predicate doesn't work for lists.

Why not?

1. (cons ’a ’()) makes a new list

2. (cons ’a ’()) makes a(nother) new list

3. eq? checks if its two args are the same

4. (eq? (cons ’a ’()) (coms ’a ’())) evaluates
to O (ie, #f)

Lists are stored as pointers to the first element
(car) and the rest of the list (cdr).

Symbols are stored uniquely, so eq? works on
them.
52

Efficiency Issues

Problem: Evaluating the same expression twice.
Example:
(define (longest-nonzero x y)
(cond ((and (null? x) (null? y)) -1)
((> (length x) (length y))
(length x))
(else (length y))

»

What can you do if there is no assignment
statement?

56

Efficiency Issues

Solution 1: Bind values to parameters in a
helper procedure.

(define (maximum x y)
(cond ((> x y) x)
(else y)
)

(define (longest-nonzero x y)
(cond ((and (null? x) (null? y)) -1)
(else
(maximum (length x) (length y)))
3

Note: There is a built-in max function.
Note 2: Helper procedures are an important

and useful tool!
57

Efficiency Issues

Higher-Order Procedures

Procedures as returned values:

(define (plus-list x)
(cond ((number? x)
(lambda (y) (+ (sum-n x) y)))
((1ist? x)
(lambda (y) (+ (sum-list x) y)))
(else (lambda (x) x))

N
1 1=> ((plus-list 3) 4)
;Value: 10

1 1=> ((plus-list ’(1 3 5)) 5)
;Value: 14

61

Solution 2: Use a let or let* construct, that
binds variables to expression results.

(let ((varl exprl)
(varn exprn))
<vars are defined and can be used here>)

(let* ((varl exprl)

(varn exprmn))
<vars are defined and can be used here>)

58

Built-In Higher-Order Procedures:
map

There is a built-in procedure map. Let's define
our own restricted version first....

(define (mymap f 1)
(cond ((null? 1) *())
(else (cons (f (car 1))
(mymap f (cdr 1))))
)

o mymap takes two arguments: a function and
a list

e mymap builds 2 new list whose elements are
the result of applying the function to each
element of the (old) list

62

Polymorphic and Monomorphic
Functions

e Polymorphic functions can be applied to
arguments of many forms

e The function length is polymorphic: it works
on lists of numbers, lists of symbols, lists
of lists, lists of anything

e The function square is monomorphic: it
only works on numbers

59

Higher-order Procedures: map

Example:
(mymap abs ’(-1 2 -3 4)) =
(123 4)

(mymap (lambda (x) (+ 1 x)) (-1 2 -3)) =
(0 3 -2)

The built-in map will produce the same re-
sults, but note that the built-in map can
take more than twoc arguments:

(map cons ’(a b c) *((1) (2) (3))) =
((a 1) (b 2) (c 3

63

Higher-Order Procedures

Procedures as input values:

(define (all-num 1lst)
(or (null? 1st)
(and (number? (car 1st))
(all-num (cdr 1st))))
)
(define (all-num-f f 1st)
(cond ((all-num 1lst) (f 1st))
(else ’error))
)
1 1=> (all-num-f abs-list ’(1 -2 3))
;Value 1: (1 2 3)

1 1=> (all-num-f abs-list ’(1 a))
;Value: error

60

What's Wrong Here??

11=>
(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else (+ (map atomcount s)))
N
;Value: atomcount
1]=> (atomcount ’(a b))

;The object (1 1), passed as an argument
;to +, is not the correct type.

2 error>

Why doesn’t this work?

64

Using eval to Correct the Problem

(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else
(eval
(cons ’+ (map atomcount s)) ’()))
»
1]=> (atomcount ’(a b))

;Value: 2
1 1=> (atomcount ’((1) (2 3 (4)) ((((5))))))

;Value: 5

65

Limitations of Using eval

Using eval to Evaluate Expressions

Applying Procedures with apply

BUT: eval only works in the current defini-
tion of atomcount because humbers evaluate to
themselves.

11=>(+123)
;Value: 6

1 1=> (comns ’+ ’(1 2 3))
;Value 12: (+ 1 2 3)

1 1=> (eval (coms ’+ ’(1 2 3)) *())
;Value: 6

66

1 1=> (append ’(a) ’(b))

;Value 13: (a b)

1]=> (cons ’append ’((a) (b)))
;Value 14: (append (a) (b))

1]=> (eval (cons ’append ’((a) (b))) *())
;Unbound variable: b

1 1=> (cons ’append ’(’(a) ’(b)))
;Value 15: (append (quote (a)) (quote (b)))

1 1=> (eval
(cons ’append ’(’(a) ’(©))) (D)
;Value 16: (a b)

Too complicated!!

67

1 1=> (apply + ’(1 2 3))
;Value: 6

1 1=> (apply append ’((a) (b)))
;Value 5: (a b)

11=>
(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else
(apply + (map atomcount s)))))

;Value: atomcount

1]=> (atomcount ’(a (b) c))
;Value: 3

68

