Lists Revisited

Recall the Cons Cell Representation:

The pair or cons cellis the most fundamental of Scheme’s
structured object types.

A list is a sequence of pairs; each pair’'s cdr is the next

pair in the sequence.

The cdr of the last pair in a proper list is the empty
list. Otherwise the sequence of pairs forms an improper
list. I.e., an empty list is a proper list, and and any pair
whose cdr is a proper list is a proper list.

An improper list is printed in dotted-pair notation with
a period (dot) preceding the final element of the list. A
pair whose cdr is not a list is often called a dotted pair

49

Creating lists

quote: (1 (2 3) ) => (1 (2 3) ()
or (quote (1 (2 3) O)) => (1 (2 3) O)

list: (list 1 °(2 3) Q) => (1 (2 3) O))

cons: Build it, piece by piece.
(cons 1 (cons (cons 2 (cons 3 ()))

(cons (O ())))

append: Appending lists
(append 1st ’(4 5)) => ((1 (2 3) O 4 5))
cons vs. list: The procedure cons actually builds pairs,

and there is no reason that the cdr of a pair must be a
list.

The procedure 1list is similar to cons, except that it
takes an arbitrary number of arguments and always builds
a proper list.

E.g., (1ist ’a ’b ’¢) — (a b ¢)
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Testing for Equality

e (eq? a b): Returns #t iff a and b are the
same Scheme object. (Don’'t use eq? with
numbers!)

e (= a b): Returns #t iff a and b are numeri-
cally equal. Pre: a and b must evaluate to
numbers.

e (equ? a b): Similar to eq?, but works for
numbers and characters. More expensive
than eq?, however.

e (equal? a b): Returns #t iff a and b have
the same structure and contents. Thus, equal?
recursively tests for equality. The most ex-
pensive equality predicate.

Recommended Reading:
Dybvig §6.1, 2nd ed. (available online), or
Dybvig §6.2, 3rd ed.
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Testing for Equality (cont.)

The eq? predicate doesn’t work for lists.

Why not?

1. (cons ’a ’()) makes a new list

2. (cons ’a ’()) makes a(nother) new list
3. eq? checks if its two args are the same

4. (eq? (cons ’a ’()) (cons ’a ’())) evaluates
to O (ie, #f)

Lists are stored as pointers to the first element
(car) and the rest of the list (cdr).

Symbols are stored uniquely, so eq? works on
them.
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Equality Checking for Lists

For lists, need a comparison procedure to check
for the same structure in two lists. How might
you write such a procedure?

(define (myequal? x y)
(or (and (atom? x) (atom? y) (eq? x y))
(and (not (atom? x)) (not (atom? y))
(myequal? (car x) (car y))
(myequal? (cdr x) (cdr y)))))
(equal? ’a ’a) evaluates to #t
(equal? ’a ’b) evaluates to ()
(equal? ’(a) ’(a)) evaluates to #t
(equal? ’((a)) ’(a)) evaluates to ()

Does this really work? Hint: atoms are num-
bers, does this work for numbers? Play around
with it and with the built-in predicate proce-
dure equal?.
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Other Useful Predicates

e (null? a): Returns #t iff a is the empty list
(or #f, depending on the implementation).

e (pair? a): Returns #t iff a is a pair, i.e., a
cons cell.

e (number? a): Returns #t iff a is a number.

e (min list): Returns the minimum of a list
of numbers.

e (max list): Returns the maximum of a list
of numbers.

e (even? a): Returns #t iff a is even.

Lots more in Dybvig §6.
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Recursive Procedures: Counting Efficiency Issues

(define (atomcount x) Problem: Evaluating the same expression twice.
(cond ((null? x) 0)
((atom? x) 1) Example:
(else (+ (atomcount (car x))
(atomcount (cdr x)))))) (define (longest-nonzero x y)
e (atomcount ’(1 2)) = 2 (cond ((and (null? x) (null? y)) -1)
e (atomcount ’(1 (2 (3)) (8))) = 4. ((> (length x) (length y))
(at > (1 (2 (3)) (5))) (length x))
(+ (at 1) (at ((2 (3)) (5)))) h
(+1 (+ (at (2 (3))) (at ((BI)))) (else (length y))
(+ 1 (+ (+ (at 2) (at ((3)))) (+ (at (B)) (at O
(+1 (+ (+1 (+ (at (3)) (at O))) (+ (+ (at B) (at O)) ON )
(+1 (+ F1 & (+(at3) (at O)) 0)) (+ (+ 10 O
1+ HFH1GEGE10O0)) (+1 0N
(+1 (+ (+1 (+10)) 1) What can you do if there is no assignment
(+1 (+ (+11) 1)
+1 (+21)) statement?
(+ 1 3)
4

This is called

“car-cdr-recursion.’
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Efficiency Issues

Solution 1: Bind values to parameters in a
helper procedure.

(define (maximum x y)
(cond ((> x y) x)
(else y)
))

(define (longest-nonzero x y)
(cond ((and (null? x) (null? y)) -1)
(else
(maximum (length x) (length y)))

))
Note: There is a built-in max function.
Note 2: Helper procedures are an important

and useful tool!
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Efficiency Issues

Solution 2: Use a let or let* construct, that
binds variables to expression results.

(let ((varl exprl)
(varn exprn))
<vars are defined and can be used here>)

(let* ((varl exprl)

(varn exprn))

<vars are defined and can be used here>)
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Polymorphic and Monomorphic Higher-Order Procedures

Functions

Procedures as input values:

e Polymorphic functions can be applied to

(define (all-num 1lst)
arguments of many forms

(or (null? 1lst)
(and (number? (car 1lst))

e The function length is polymorphic: it works (all-num (cdr 1st))))
on lists of numbers, lists of symbols, lists )
of lists, lists of anything (define (all-num-f f 1st)

(cond ((all-num 1lst) (f 1lst))

(else ’error))
e The function square is monomorphic: it )

only works on numbers 1 ]=> (all-num-f abs-list ’(1 -2 3))
;Value 1: (1 2 3)

1 ]=> (all-num-f abs-list (1 a))

;Value: error
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Higher-Order Procedures Built-In Higher-Order Procedures:
map

Procedures as returned values:
There is a built-in procedure map. Let's define

(define (plus-list x) our own restricted version first....
(cond ((number? x)
(lambda (y) (+ (sum-n x) y))) (define (mymap f 1)
((list? x) (cond ((null? 1) ’Q))
(lambda (y) (+ (sum-list x) y))) (else (cons (f (car 1))
(else (lambda (x) x)) (mymap £ (cdr 1))))
) )
1 J=> ((plus-list 3) 4) e mymap takes two arguments: a function and
;Value: 10 a list
1 ]=> ((plus-list ’(1 3 5)) 5) e mymap builds a new list whose elements are
Value: 14 the result of applying the function to each

element of the (old) list
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Higher-order Procedures: map

Example:

(mymap abs ’(-1 2 -3 4)) =
(123 4)

(mymap (lambda (x) (+ 1 x)) ’(-1 2 -3)) =
(0 3 -2)

The built-in map will produce the same re-
sults, but note that the built-in map can
take more than two arguments:

(map cons ’(a b c) ’((1) (2) (3))) =
((a 1) (2) (c 3)
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What’s Wrong Here??

1 1=>
(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else (+ (map atomcount s)))

))
;Value: atomcount

1 ]=> (atomcount ’(a b))

;The object (1 1), passed as an argument

;to +, is not the correct type.
2 error>

Why doesn’t this work?

64



Using eval to Correct the Problem

Limitations of Using eval

(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else
(eval
(cons ’+ (map atomcount s)) ’()))

))
1 ]=> (atomcount ’(a b))
;Value: 2

1 I=> (atomcount ’((1) (2 3 (4)) ((((5))))))

;Value: 5
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BUT: eval only works in the current defini-
tion of atomcount because numbers evaluate to
themselves.

1]1=>(+123)
;Value: 6

1 ]=> (cons ’+ ’(1 2 3))
;Value 12: (+ 1 2 3)

1 J=> (eval (comns ’+ (1 2 3)) ()
;Value: 6
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Using eval to Evaluate Expressions Applying Procedures with apply

1 1=> (append ’(a) ’(b)) 1 1=> (apply + ’(1 2 3))
;Value 13: (a b) ;Value: 6
1 1=> (cons ’append ’((a) (b))) 1 ]=> (apply append ’((a) (b)))
;Value 14: (append (a) (b)) ;Value 5: (a b)
1 1=> (eval (cons ’append ’((a) (b))) ’QO) 11=>
;Unbound variable: b (define (atomcount s)
e (cond ((null? s) 0)
1 1=> (cons ’append ’( ’(a) ’(b) )) ((atom? s) 1)
;Value 15: (append (quote (a)) (quote (b))) (else
(apply + (map atomcount s)))))

1 1=> (eval

(cons ’append ’( ’(a) ’(b))) *()) ;Value: atomcount
;Value 16: (a b) 1 ]J=> (atomcount ’(a (b) c))

;Value: 3
Too complicated!!
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