Lists Revisited

Recall the Cons Cell Representation:

The pair or cons cellis the most fundamental of Scheme’s
structured object types.

A list is a sequence of pairs; each pair’'s cdr is the next

pair in the sequence.

The cdr of the last pair in a proper list is the empty
list. Otherwise the sequence of pairs forms an improper
list. I.e., an empty list is a proper list, and and any pair
whose cdr is a proper list is a proper list.

An improper list is printed in dotted-pair notation with
a period (dot) preceding the final element of the list. A
pair whose cdr is not a list is often called a dotted pair

49

Creating lists

quote: (1 (2 3)) => (1 (2 3) ()
or (quote (1 (2 3) O)) => (1 (2 3) O)

list: (list 1 °(2 3) Q) => (1 (2 3) O))

cons: Build it, piece by piece.
(cons 1 (cons (cons 2 (cons 3 ()))

(cons (O ())))

append: Appending lists
(append 1st ’(4 5)) => ((1 (2 3) O 4 5))
cons vs. list: The procedure cons actually builds pairs,

and there is no reason that the cdr of a pair must be a
list.

The procedure 1list is similar to cons, except that it
takes an arbitrary number of arguments and always builds
a proper list.

E.g., (1ist ’a ’b ’¢) — (a b ¢)

50

Testing for Equality

e (eq? a b): Returns #t iff a and b are the
same Scheme object. (Don’'t use eq? with
numbers!)

e (= a b): Returns #t iff a and b are numeri-
cally equal. Pre: a and b must evaluate to
numbers.

e (equ? a b): Similar to eq?, but works for
numbers and characters. More expensive
than eq?, however.

e (equal? a b): Returns #t iff a and b have
the same structure and contents. Thus, equal?
recursively tests for equality. The most ex-
pensive equality predicate.

Recommended Reading:
Dybvig §6.1, 2nd ed. (available online), or
Dybvig §6.2, 3rd ed.
51

Testing for Equality (cont.)

The eq? predicate doesn’t work for lists.

Why not?

1. (cons ’a ’()) makes a new list

2. (cons ’a ’()) makes a(nother) new list
3. eq? checks if its two args are the same

4. (eq? (cons ’a ’()) (cons ’a ’())) evaluates
to O (ie, #f)

Lists are stored as pointers to the first element
(car) and the rest of the list (cdr).

Symbols are stored uniquely, so eq? works on
them.
52

Equality Checking for Lists

For lists, need a comparison procedure to check
for the same structure in two lists. How might
you write such a procedure?

(define (myequal? x y)
(or (and (atom? x) (atom? y) (eq? x y))
(and (not (atom? x)) (not (atom? y))
(myequal? (car x) (car y))
(myequal? (cdr x) (cdr y)))))
(equal? ’a ’a) evaluates to #t
(equal? ’a ’b) evaluates to ()
(equal? ’(a) ’(a)) evaluates to #t
(equal? ’((a)) ’(a)) evaluates to ()

Does this really work? Hint: atoms are num-
bers, does this work for numbers? Play around
with it and with the built-in predicate proce-
dure equal?.

53

Other Useful Predicates

e (null? a): Returns #t iff a is the empty list
(or #f, depending on the implementation).

e (pair? a): Returns #t iff a is a pair, i.e., a
cons cell.

e (number? a): Returns #t iff a is a number.

e (min list): Returns the minimum of a list
of numbers.

e (max list): Returns the maximum of a list
of numbers.

e (even? a): Returns #t iff a is even.

Lots more in Dybvig §6.

54

Recursive Procedures: Counting Efficiency Issues

(define (atomcount x) Problem: Evaluating the same expression twice.
(cond ((null? x) 0)
((atom? x) 1) Example:
(else (+ (atomcount (car x))
(atomcount (cdr x)))))) (define (longest-nonzero x y)
e (atomcount ’(1 2)) = 2 (cond ((and (null? x) (null? y)) -1)
e (atomcount ’(1 (2 (3)) (8))) = 4. ((> (length x) (length y))
(at > (1 (2 (3)) (5))) (length x))
(+ (at 1) (at ((2 (3)) (5)))) h
(+1 (+ (at (2 (3))) (at ((BI)))) (else (length y))
(+ 1 (+ (+ (at 2) (at ((3)))) (+ (at (B)) (at O
(+1 (+ (+1 (+ (at (3)) (at O))) (+ (+ (at B) (at O)) ON)
(+1 (+ F1 & (+(at3) (at O)) 0)) (+ (+ 10 O
1+ HFH1GEGE10O0)) (+1 0N
(+1 (+ (+1 (+10)) 1) What can you do if there is no assignment
(+1 (+ (+11) 1)
+1 (+21)) statement?
(+ 1 3)
4

This is called

“car-cdr-recursion.’
55 56

Efficiency Issues

Solution 1: Bind values to parameters in a
helper procedure.

(define (maximum x y)
(cond ((> x y) x)
(else y)
))

(define (longest-nonzero x y)
(cond ((and (null? x) (null? y)) -1)
(else
(maximum (length x) (length y)))

))
Note: There is a built-in max function.
Note 2: Helper procedures are an important

and useful tool!
57

Efficiency Issues

Solution 2: Use a let or let* construct, that
binds variables to expression results.

(let ((varl exprl)
(varn exprn))
<vars are defined and can be used here>)

(let* ((varl exprl)

(varn exprn))

<vars are defined and can be used here>)

58

Polymorphic and Monomorphic Higher-Order Procedures

Functions

Procedures as input values:

e Polymorphic functions can be applied to

(define (all-num 1lst)
arguments of many forms

(or (null? 1lst)
(and (number? (car 1lst))

e The function length is polymorphic: it works (all-num (cdr 1st))))
on lists of numbers, lists of symbols, lists)
of lists, lists of anything (define (all-num-f f 1st)

(cond ((all-num 1lst) (f 1lst))

(else ’error))
e The function square is monomorphic: it)

only works on numbers 1]=> (all-num-f abs-list ’(1 -2 3))
;Value 1: (1 2 3)

1]=> (all-num-f abs-list (1 a))

;Value: error

59

Higher-Order Procedures Built-In Higher-Order Procedures:
map

Procedures as returned values:
There is a built-in procedure map. Let's define

(define (plus-list x) our own restricted version first....
(cond ((number? x)
(lambda (y) (+ (sum-n x) y))) (define (mymap f 1)
((list? x) (cond ((null? 1) ’Q))
(lambda (y) (+ (sum-list x) y))) (else (cons (f (car 1))
(else (lambda (x) x)) (mymap £ (cdr 1))))
))
1 J=> ((plus-list 3) 4) e mymap takes two arguments: a function and
;Value: 10 a list
1]=> ((plus-list ’(1 3 5)) 5) e mymap builds a new list whose elements are
Value: 14 the result of applying the function to each

element of the (old) list

61 62

Higher-order Procedures: map

Example:

(mymap abs ’(-1 2 -3 4)) =
(123 4)

(mymap (lambda (x) (+ 1 x)) ’(-1 2 -3)) =
(0 3 -2)

The built-in map will produce the same re-
sults, but note that the built-in map can
take more than two arguments:

(map cons ’(a b c) ’((1) (2) (3))) =
((a 1) (2) (c 3)

63

What’s Wrong Here??

1 1=>
(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else (+ (map atomcount s)))

))
;Value: atomcount

1]=> (atomcount ’(a b))

;The object (1 1), passed as an argument

;to +, is not the correct type.
2 error>

Why doesn’t this work?

64

Using eval to Correct the Problem

Limitations of Using eval

(define (atomcount s)
(cond ((null? s) 0)
((atom? s) 1)
(else
(eval
(cons ’+ (map atomcount s)) ’()))

))
1]=> (atomcount ’(a b))
;Value: 2

1 I=> (atomcount ’((1) (2 3 (4)) ((((5))))))

;Value: 5

65

BUT: eval only works in the current defini-
tion of atomcount because numbers evaluate to
themselves.

1]1=>(+123)
;Value: 6

1]=> (cons ’+ ’(1 2 3))
;Value 12: (+ 1 2 3)

1 J=> (eval (comns ’+ (1 2 3)) ()
;Value: 6

66

Using eval to Evaluate Expressions Applying Procedures with apply

1 1=> (append ’(a) ’(b)) 1 1=> (apply + ’(1 2 3))
;Value 13: (a b) ;Value: 6
1 1=> (cons ’append ’((a) (b))) 1]=> (apply append ’((a) (b)))
;Value 14: (append (a) (b)) ;Value 5: (a b)
1 1=> (eval (cons ’append ’((a) (b))) ’QO) 11=>
;Unbound variable: b (define (atomcount s)
e (cond ((null? s) 0)
1 1=> (cons ’append ’(’(a) ’(b))) ((atom? s) 1)
;Value 15: (append (quote (a)) (quote (b))) (else
(apply + (map atomcount s)))))

1 1=> (eval

(cons ’append ’(’(a) ’(b))) *()) ;Value: atomcount
;Value 16: (a b) 1]J=> (atomcount ’(a (b) c))

;Value: 3
Too complicated!!

67 68

