Jumping right in

Functional Programming—

Illustrated in Scheme A Scheme procedure

(define increment
(lambda (n)
(+ n 1)

References:)

e Dybvig, (available online and in the library)
Mitchell Chapter 3, 4.2. or

, : defi : .
Lisp slides © D. Horton 2000. (define (increment n)

(+ n 1)
Scheme slides © S. Stevenson, D. Inkpen 2001.) B
Adapted for Scheme © E. Joanis 2000, 2002.
M0d|f|ed and Updated © S MCIlralth 2004 A Ca" to the procedure

Additional slides use material taken from © G.

Baumagartner 2001.
(increment 21)

The Spirit of Lisp-like Languages Pure Functional Languages

We shall first define a class of symbolic ex- . .
pressions in terms of ordered pairs and lists. Fundamental concept: application of (math-

Then we shall define five elementary functions ematical) functions to values

and predicates, and build from them by com-

position, conditional expressions and recur-

sive definitions an extensive class of functions

of which we shall give a number of examples. 1. Referential transparency: The value of a

We shall then show how these functions can £ t] licati is ind dent of th
themselves be expressed as symbolic ex- unction application Is inaependent o e

pressions, and we shall give a universal func- contex t in which it occurs

tion apply that allows us to compute from the e value of f£(a,b,c) depends only on the
expressions for a given function its value for e

given arguments. Finally, we shall define some values of £, a, b and ¢

functions with functions as arguments and e It does not depend on the global state
give some useful examples.)
of computation

. . . = all vars in function must be parameters
McCarthy, J, [1960]. Recursive functions of symbolic

expressions and their computation by machine, Part I.
Comm. ACM 3:4; quoted in Sethi.

Pure Functional Languages (cont.)

2. The concept of assignment is not part of

functional programming

e no explicit assignment statements

e variables bound to values only through
the association of actual parameters to
formal parameters in function calls

e function calls have no side effects

e thus no need to consider global state

3. Control flow is governed by function calls
and conditional expressions
= no iteration
= recursion is widely used

Pure Functional Languages (cont.)

4. All storage management is implicit
e needs garbage collection

5. Functions are First Class Values
e Can be returned as the value of an ex-
pression
e Can be passed as an argument
e Can be put in a data structure as a value

e Unnamed functions exist as values

A Functional Program Jumping Back In
The MIT Scheme Interface

werewolf 1% scheme

A program includes: Scheme Microcode Version ...
1. A set of function definitions 11=>(+835169)
;Value: 41
2. An expression to be evaluated 1]=> (define increment (lambda (n) (+ n 1)))

;Value: increment

1 J=> (increment 21)

E.g. in Scheme: :Value: 22

1]=> (define (abs-val x) 1 1=> (load "imer"

(if (>=x 0) ;Loading "incr.scm" -- done
x ;Value: increment-list
(- x))) 1 1=> (increment-list (1 32 7))

;The object 1 is not applicable.
;To continue, call RESTART with an option number:
;Value: abs-val ; (RESTART 2) => Specify a procedure to use in its place.

H

; (RESTART 1) => Return to read-eval-print level 1.
1 1=> (abs-val (- 3 5)) 2 error> (restart 1)
;Abort!
;Value: 2 1]=> (increment-list ’(1 32 7))
7 ;Value 1: (2 33 8) 8

1]=> (trace increment-list)
;Unspecified return value

1 1=> (increment-list ’(1 32 7))

[Entering
Args:
[Entering
Args:
[Entering
Args:
[Entering
Args:
LO
==
Args:
[(8

Args:

[(2 33 8)
<==

Args:
;Value 3:

[compound-procedure
(1 32 7)]

[compound-procedure
(32 7)1
#[compound-procedure
(M1
#[compound-procedure

01

#[compound-procedure

01

[compound-procedure

(M1

[compound-procedure
(32 7)1

[compound-procedure
(1 32 7)1
(2 33 8)

1 I=> (exit)

Kill Scheme (y or n)? Yes

Happy Happy Joy Joy.
werewolf 2}

2

2

increment-list]
increment-list]
increment-list]

increment-list]

increment-list]

increment-list]

increment-list]

increment-list]

Formal Roots:)\-Calculus

e Defined by Alonzo Church, a logician, in
1930s as a computational theory of recur-
sive functions

e)\-calculus is equivalent in computational
power to Turing machines

e Recall: what's a Turing machine?
Turing machines are abstract machines that
emphasize computation as a series of state
transitions driven by symbols on an input
tape (which leads naturally to an impera-
tive style of programming based on assign-
ment)

e How is A-calculus different?
— MA-cCalculus emphasizes typed expressions
and functions (which naturally leads to
a functional style of programming).
— No state transitions.

10

A-Calculus (cont.) A-Calculus (cont.)

A-calculus is a formal system for defining re- Formal Syntax in BNF
cursive functions and their properties.
<A\-term> ::= <variable>
e EXxpressions are called A-expressions. | A<variable> . <A-term>

| (KA-term> <\-term>)
e Every \-expression denotes a function.

))) <variable> ::= x | y | =z
e A \-expression consists of 3 kinds of terms:

Variables: z,y,z etc
V denotes arbitrary variables
Abstractions: A\V.E
where V is some variable and E is an-
other A-term.
Applications: (E1 E2) where E1 and E2
are A\-terms. Applications are sometimes
called combinations.

Or more compactly

[c3]
Il

vV | AMN.E | (E1 E2)
x |y | =z |

Where V is an arbitrary variable and E is an
arbitrary \-expression. We call AV the head of
the A\-expressions and E the body.

11 12

MA-Calculus: Functional Forms

A-Calculus

Is it really Turing Complete?
A higher-order function (functional form):

e Takes functions as parameters

e Yields a function as a result Can we represent the class of Turing com-
E.g.: Given putable functions?

f(x) =x+2, g(x) = 3 * x
then Yes, we can represent:

' e Boolean and conditional functions

h(x) = £(g(x)) and e Numerical and arithmetic functions

h(x) = B * x) + 2 e Data structures: ordered pairs, lists, etc.
h(x) is called a higher-order function. e Recursion
Types of Functional Forms: But, doing so in A-calculus is tedious;

Construction form: E.qg.,

e Need syntactic sugar to simplify task,

e \-calculus more suitable as an abstract model
of a programming language rather than a prac-
tical programming language.

g(x) =x *x, h(x) =2 xx, i(x) =x / 2
[g,h,i] (4) = (16,8,2)

Apply-to-all form: E.g,

h(x) = x *x x Both Turing machines and A-calculus are ide-
y(h, (2,3,4)) = (4,9,16) alized, mathematical models of computation.

13 14

Scheme: A Functional
Programming Landguage

1958: Lisp

1975: Scheme (revised over the years)

1980: Common Lisp ("CL")

1980s: Lisp Machines (e.g, Symbolics, TI Explorer, etc.)

Lisp, Scheme and CL contrasted on following pages.

Some features of Scheme:

e denotational semantics based on the A-calculus.

I.e., the meaning of programming constructs in the language is de-

fined in terms of mathematical functions.

e lexical scoping
I.e., all free variables in a A-expression are assigned values at the

time that the \is defined (i.e., evaluated and returned).
e arbitrary ctrl structures w/ continuations.
e functions as first-class values

e automatic garbage collection.
15

LISP

Functional language developed by John Mc-
Carthy in 1958.

Semantics based on \-Calculus

All functions operate on lists or atomic sym-
bols: (called “S-expressions”)

Only five basic functions: list functions cons,
car, cdr, equal, atom and one conditional
construct: cond

Uses dynamic scoping
Useful for list-processing applications

Programs and data have the same syntac-
tic form: S-expressions

Used in Artificial Intelligence

16

SCHEME COMMON LISP (CL)

Developed in 1975 by G. Sussman and G. e Implementations of LISP did not completely

Steele adhere to semantics

A version of LISP e Semantics redefined to match implemen-
tations

Consistent syntax, small language

e COMMON LISP has become the standard
Closer to initial semantics of LISP

Provides basic list processing tools e Committee-designed language (1980s) to

Allows functions to be first class objects unify LISP variants

Provides support for lazy evaluation * Many defined functions

lexical scoping of variables e Simple syntax, large language

17 18

EXxpressions

Common structure for both procedures and data. In
Scheme, functions are called procedures.

When an expression is evaluated it creates a value or list
of values that can be embedded into other expressions.
Therefore programs can be written to manipulate other
programs.

<expression> —--> <variable>
| <literal>
| <procedure call>
| <lambda expression>
| <conditional>
| <assignment>
| <derived expression>

E.g.,
#t (true)
() (false)
(a b c)
(a (b c) d)
((abc) (de (£)))
1 () 2
(+ ’1 2)

19

Procedure Application

The main form of a Scheme expression is the
procedure application. (Terminology: in Scheme,
the official name for what you would think of
as a function is procedure.)

(procedure argl arg2 ... argn)
Evaluation

e Each argument is evaluated.
e The procedure is applied to the results.

Exception: syntactic forms.

Syntactic forms violate the rule—they are built
in to the language to handle cases the rule
above can't handle. Examples: define, if,
cond, lambda---more on this later.

20

Examples

o (- 1) => -1

e (x 57) =>35

e (+12 (x23)) =>9

o (+ (-63) (/102) 2 (x2 3)) => 16
e (cos 0) => -1

+

Exercice: run Scheme and try the arithmetic
operators with 0, 1, 2 and 3 arguments, and
figure out how the results make sense.

21

Variables

To bind a name to a value:

(define var value)

(define a 2)

=> a

a

=> 2

(+ a 2)

=>4

(define b 3)

=> b

(define ¢ (+ a (*x 4 b)))
=> c ; LISP: Lots of Silly Parentheses
c

=> 14

Could define be a procedure?

22

Built-In Procedures

Built-In Procedures

eq?: identity on atoms
null?: is list empty?
car: selects first element of list

cdr: selects rest of list

(cons element list): constructs lists by adding

element to front of list

quote or ’: produces constants

23

»() is the empty list

(car

(car

(cdr

(cdr

’(a b)) =

"((a) b (c d))) =

>(a b c)) =

(@) b (c d))) =

24

e car and cdr can break up any list:

— (car (cdr (cdr ’((a) b (c d))))) =

— (caddr ’((a) b (c d)))

e cons Can
— (cons
— (cons
— (cons
— (cons

construct any list:

a ’()) =
’d ’(e)) =
’(a b) ’(c d)) =

’(abc) ‘((a) b)) =

25

Lists

A simple but powerful general-purpose datatype.
(How many datatypes have we seen so far?)

(1 #t 1)
O
(1 (23 O)

Building block: the cons cell.

L1 %HI%HO

1 0
Gl [0

2 3

Note: Sometimes you'll see NIL. This is 46ISP
notation! In Scheme, we use Q).

More about lists Things you should know about
cons, pairs and lists

Proper lists: The pair or cons cell is the most fundamental of Scheme’s
0O, (a (b (c) A e structured object types.
(cons ’a ’(b)) — (a b) A list is a sequence of pairs; each pair's cdr is the next
pair in the sequence.
Dotted pairs (improper lists): The cdr of the last pair in a proper list is the empty
(cons ’a ’b) — (a . b) list. Otherwise the sequence of pairs forms an improper

list. I.e., an empty list is a proper list, and and any pair

(5 (b)) —s whose cdr is a proper list is a proper list.
car a . a

An improper list is printed in dotted-pair notation with
(cdr ’(a . b)) — b a period (dot) preceding the final element of the list. A
pair whose cdr is not a list is often called a dotted pair

(cons a (b . ¢c)) — (ab . ¢ cons VS. list: The procedure cons actually builds pairs,
and there is no reason that the cdr of a pair must be a
(abc) (. (MB. (c. O list, as illustrated on the previous page.

The procedure 1list is similar to cons, except that it
takes an arbitrary number of arguments and always builds
a proper list.

E.g., (1ist ’a ’b ’c) — (a b ¢)

27 28

Other (Predicate) Procedures

Predicate procedures return #t or () (i.e., false).

e + - x / numeric operators, e.g.,
(+53) =8, (-53) =2
(* 56 3) =15, (/ 5 3) = 1.6666666

e = < > <= >= number comparison ops

e Run-time type checking procedures:

— All return Boolean values: #t and ()

— (number? 5) is #t

— (zero? 0) is #t

— (symbol? ’sam) iS #t
— (1ist? ’(a b)) is #t
— (null? °(Q)) is #t

29

Other Predicate Procedures

(number? ’sam) evaluates to ()

(null?
(zero?
(zero?
(1ist?

(list?

’(a)) evaluates to ()

(- 3 3)) evaluates to #t
’(- 3 3)) = type error
(+ 3 4)) evaluates to ()

’(+ 3 4)) evaluates to #t

30

