
Typing and MLTyping and ML

CSC324
Fall 2004
Sheila McIlraith

Acknowledgement:
The material in these notes is derived from a variety
of sources, including:
Elements of ML Programming (Ullman),
Concepts in Programming Languages (Mitchell)
and the notes of Wael Aboelsaddat, Tony Bonner,
Eric Joanis, Gerald Penn, and Suzanne Stevenson.

TypingTyping

“A name for a set of values and some operations
which can be performed on that set of values.”

“A collection of computational entities that share
some common property.”
E.g.,

reals
integers
strings
int → bool
(int → int) → bool

What constitutes a type is language dependent.

Uses/MeritsUses/Merits

Program organization and documentation
• Separate types for separate concepts
• Indicate intended use of declared identifiers

Identify and prevent errors
• Compile-time or run-time checking can prevent

meaningless computation such as
5 + true - Charlotte

Support optimization
• Compiler can generate better code if it knows

what’s in each variable, e.g., short integers
require fewer bits.

• Access record component by known offset

Type errorsType errors

Definition
• A type error occurs when execution of program

is not faithful to the intended semantics, i.e., the
programmer’s intended interpretation.

Hardware errors
• function call y() where y is not a function
• may cause jump to instruction that does not

contain a legal op code

Unintended semantics
• int_add(3, 4.5)
• not a hardware error but the bits representing 4.5

will be interpreted as an integer

Type SafetyType Safety
& Type Checking& Type Checking

• A programming language is type safe if no
program is allowed to violate its type
distinctions.
– Scheme, ML and Java are type safe.
– C and C++ are not.

• The process of verifying and enforcing the
constraints of types is called type checking.

• Type checking can either occur at compile-
time (static) or at run-time (dynamic).

CompileCompile-- vs. Runvs. Run--timetime

• Scheme: run-time (dynamic) type checking
(car x) checks first to make sure x is a list

• ML and Java: compile-time (static) type checking
f(x) must have f: A → B and x:A

Trade-off:
• Both prevent type errors
• Run-time checking slows down execution
• Compile-time checking restricts program flexibility

E.g., Scheme list elements can have diff. types,
ML lists elements must have the same type

• Static typing can make programming more difficult,
initially. It’s harder to get things to compile, and

TypeType
CheckingChecking-- vs. Inferencevs. Inference

Standard Type Checking:
int f(int x) { return x+1;};
int g(int y) {return f(y+1)*2;};
– Look at body of each function and use declared

types to check for agreement.

Type Inference:
• Looks at code without type info and figures out

what types could have been declared.
• ML is designed to make type inference

tractable.
• A cool algorithm!
• Widely regarded as an important language

innovation.
• ML type inference gives you some idea of how

other static analysis algorithms might work. It
uses constraint satisfaction techniques.

Type InferenceType Inference
This is type inference:

E.g. A3 := B4 + 1;
Q: What type is A3 and B4 ?
A: Must be integer

E.g. if test then …
Q: What type is test ?
A: Must be Boolean

Sound type system: a type system in which all types
can always be inferred in any valid program.

ML’s Type Inference Algorithm (Mitchell):
1. Assign a type to the expression and each

subexpression by using the known type of a
symbol of a type variable.

2. Generate a set of constraints on types by using
the parse tree of the expression.

3. Solve these constraints by using unification, which
is a substitution-based algorithm for solving
systems of equations.

MLML

Developed at Edinburgh (early ’80s) as Meta-
Language for a program verification system
• Now a general purpose language
• There are two basic dialects of ML

– Standard ML (1991) & ML 2000
– Caml (including Objective Caml, or OCaml)

A pure functional language
• Based on typed lambda calculus
• Grew out of frustration with Lisp!
• Major programs can be written w/o variables

Widely accepted
• reasonable performance (claimed)
• can be compiled
• syntax not as arcane as LISP (nor as simple…)

ML: Main FeaturesML: Main Features
Functional Language

HOFs, recursion strongly encouraged, etc.
Combination of Lisp and Algol features
Strong, static typing w/ type inference

Quite a fancy type system!
Polymorphism

a function can take arguments of various types
Abstract & recursive data types

supported through an elegant type system,
the ability to construct new types, and
constructs that restrict access to objects of a
given type through a fixed set of ops defined for
that type.

Pattern matching
Function as a template

Exception handling
Allow you to handle errors/exception

Elaborate module system
Most highly developed of any language

ML: Tutorial ReviewML: Tutorial Review
SML environment basics

Each ML expression has a type associated w/ it.
• Interpreter builds the type expression
• Cannot mix types in expressions
• Must explicitly coerce/type-case

e.g. real(2) + 3.0 : real

Data types (w/ operators):
Basic: unit, bool, integer, real, string
Constructors : list, tuple, array, record, function
operators infix, can be overloaded.

Read-eval-print
• Compiler infers type before compiling & executing.
E.g.,

- (5+3)-2;
> val it = 6 : int
- If 5>3 then “Bob” else “Carol”;
>val it=“Bob” : string
- 5-4;
> val it=false : bool

Assignment
val <constant-name> = <expression>;

ML

Patterns & DeclarationsPatterns & Declarations
Patterns can be used in place of variables

<pat> ::= <id>|<tuple>|<cons>|<record>|…

Value declaration (general form):
val <pat> = <exp>

E.g.,
- val myTuple = (“Jen”,”Brad”);
val myTuple = (“Jen","brad") : string * string

- val(x,y) = myTuple;
Return value?:

- val myList = [1,2,3,4];
Return value?:

- val x::rest = myList;
Return value?:

Local declarations:
- let val x = 2+3 in x*4 end;
val it = 20 : int

ML

DeclarationsDeclarations

ML has let too!

Local declarations:
- let val x = 2+3 in x*4 end;
val it = 20 : int

- let
val m=3 (* ; is optional *)
val n=m*m

in
m+n

end;
Return value?:

ML

Pattern MatchingPattern Matching
Pattern matching is powerful:
• Allows programmers to see the arguments
• No more heads and tails (cars/cdrs)

Tupple pattern matching
-val v=((2, "Test"),(3.2,#"A"));
Return value?

-val ((i,s),(r,c))=v;
val i = 2 : int
val s = "Test" : string
val r = 3.2 : real
val c = #"A" : char

-val (p1,p2)=v;val p1 = (2,"Test") : int * string
val p2 = (3.2,#"A") : real * char

-val (_,(r,_))=v; (*_ (“don’t care”) matches anything!*)
val r = 3.2 : real

ML

Pattern MatchingPattern Matching

Record pattern matching
-type stInfo={name:string, id:int, gpa:real};
type stInfo = {gpa:real, id:int, name:string}

-val st1:stInfo={name=“jen", id=123, gpa=4.0};
val st1 = {gpa=4.0,id=123,name="jen"} : stInfo

-val {name=N, gpa=G, id=_}=st1; (* order doesn't matter! *)
val G = 4.0 : real
val N = “jen" : string

-val {gpa,id, name}=st1; (* this is an abbreviation in ML *)
val gpa = 4.0 : real
val id = 123 : int
val name = “jen" : string

-val {name,...}=st1l; (* to specify subset of fields *)
val name = “jen" : string

ML

FunctionsFunctions
Like Scheme there are:
• Defined functions
• Anonymous functions
• Recursive functions
• Higher-order functions
• And you can pass functions as parameters, and return

them as values.

Unlike Scheme,
• we call these things “functions” not “procedures”

f: A → B means
for every x c A,

some element y=f(x) c B
f(x) = run forever

terminate by raising an exception

A function maps a type to another one: accepts only
one argument.

What if we need multiple arguments?

ML

Function DeclarationsFunction Declarations

Function Declaration
Single clause definition

fun <fname> (<pat>) =<exp>;
Function arguments (patterns) don’t always need

parentheses, but it doesn’t hurt to use them

Examples:
- fun fahrToCelsius t = (t -32) * 5 div 9;
val fahrToCelsius = fn : int -> int

- fun foo L = (1 + hd L) :: (tl L);
Return value:?

- fun quotrem (x,y) = ((x div y), (x mod y));
Return value?:

ML

Function DeclarationsFunction Declarations
Multiple-clause definition

fun <fname> (<pat1>) = <exp1>
| <fname> (<pat2>) = <exp2>
| …
| <fname> (<patn>) = <expn>

Lazy: The first pattern that matches the actual
parameter will be chosen.

Examples:
-fun sum (x,y)= x+y;
val sum = fn: int*int -> int

-sum (2,3);
val it = 5 : int

-fun len (nil) = 0 (*nil or [] Also we can drop ()*)
| len (h::rest) = 1+len(rest); (* () is necessary!*)

Result returned?:

-len ([5]);
val it = 1: int
-len ["Alice", "John"];
val it = 2: int

ML

Function DeclarationsFunction Declarations
Watch out!

- val z=4;
val z = 4 : int

-fun sumz (x,y)= x+y+z;
val sumz = fn: int*int -> int

-sumz (2,3);
val it = 9 : int

- val z=7;
val z = 7 : int

-sumz (2,3);
val it = 9 : int

No variable can occur twice in a pattern
- fun eq(x,x)=true

| eq(x,y)=false;
Error: duplicate variable in pattern(s)

If the pattern doesn’t exhaust all possible values,
we get a warning.

ML

Function DeclarationsFunction Declarations
Example:
- fun listsum L = if (null L) then 0

else (hd L) + listsum (tl L);
val listsum = fn : int list -> int

- listsum [1,2,3];
val it = 6 : int

Better:
- fun listsum [] = 0

| listsum L = (hd L) + listsum (tl L);

Best
- fun listsum [] = 0
| listsum (h::t) = h + listsum t;

Anonymous FunctionsAnonymous Functions
fn <pat> => <expr>
This is just like a Scheme lambda expression

(lambda (<pat>) (exp))

Examples:
-(fn(x,y)=> x+y) (2,3);
val it = 5 : int

-val mysum= fn (x,y)=> x+y;
val mysum = fn : int * int -> int

-mysum(2,3)
val it = 5 : int

The following declarations are identical:
- fun f(n) = 2*n;
val f = fn : int -> int

- val f = fn n => 2*n;
val f = fn : int -> int

ML

Anonymous FunctionsAnonymous Functions
What is this doing?

- fun foo (m, n) =
if m > n then [] else m :: foo(m+1, n);

Result returned?:

- foo(1,6);

ML

ML

Recursive FunctionsRecursive Functions
Examples:

- fun append(nil, ys) = ys
| append(x::xs,ys) = x :: append(xs,ys);

val append = fn : 'a list * 'a list -> 'a list

- fun reverse nil = nil
| reverse(x::xs) = append((reverse xs),[x]);

val reverse = fn : 'a list -> 'a list

There is a more efficient reverse….we’ll see this later.

ML

Mutual RecursionMutual Recursion
The following is wrong:
fun even 0 = true

| even x = odd (x-1); (*wrong: odd not defined*)

The following is correct, using mutual recursion:
fun even 0 = true
| even x = odd (x-1)

and odd 0 = false
| odd x = even (x-1);

ML

Important IssuesImportant Issues
1. Function application is left-associative. Use () if nec’.

abs square x + y * abs z means
(abs square) x + (y * (abs z)

Our error: operator and operand don't agree

2. The combination of tuples, functions, infix ops, type
constructors can be syntactically tricky when
defining/calling functions!

Eg. length 2::[1,3] is wrong: it means
(length 2) :: [1,3].
Correct formulation?:

Eg.
fun f1 nil=0 |

f1 h::t= 1+f1 t;
Error: infix operator "::" used without "op" in fun dec
Error: clauses don't all have same no. of patterns

Correct formulations?:

ML

Important Issues Important Issues (cont.)(cont.)

The syntax becomes more complex when considering
the following short notation:

In ML
fun sum x y=x+y;

is short for
fun sum x= (fn y=>x+y);

So, its type is:
fn : int -> (int -> int)

Similarly,
fun sum3 x y z = x+y+z

is short for:
fun sum3 x =

(fn y =>
(fn z => x+y+z));

So it’s type is:
fn : int -> int -> int -> int

	Typing
	Uses/Merits
	Type errors
	Type Safety& Type Checking
	Compile- vs. Run-time
	TypeChecking- vs. Inference
	Type Inference
	ML
	ML: Main Features
	ML: Tutorial Review
	Patterns & Declarations
	Declarations
	Pattern Matching
	Pattern Matching
	Functions
	Function Declarations
	Function Declarations
	Function Declarations
	Function Declarations
	Anonymous Functions
	Anonymous Functions
	Recursive Functions
	Mutual Recursion
	Important Issues
	Important Issues (cont.)

