
Assignment 5. University of Toronto, CSC324 - Principles of Programming Languages, Fall 2004 1

Computer Science 324 22 November, 2004
St. George Campus University of Toronto

Homework Assignment #5
Due: Wednesday, 8 December, 2004, by 5pm

Last day of class, so no grace days permitted, and no late assignments accepted.

Silent Policy: A silent policy will take effect 24 hours before this assignment is due. This means that no question
about this assignment will be answered, whether it is asked on the newsgroup, by email, or in person.
Total Marks: There are 101 marks available in this assignment. This assignment represents 10% of the course grade.

Handing in this Assignment
What to hand in on paper: Please use an unsealed envelope, attaching the cover page provided to the front. Note

that without a properly completed and signed cover page, your assignment will not be marked. Put inside:

1. A printout of all your solutions.

2. You must describe the testing strategy that you used for predicates
���������
	���
����

, ��������� ��������� � ����� ,
�����
������� � �� ,

and ! ��"�������� � ��# . This should include a table listing the test cases that you designed for your predicate, what
output your predicate returned, and an explanation of why the test case and output are significant in verifying
the correctness of the predicate. Read the following for a discussion of good testing practises:

��� �%$ ����&�&�&(' � ")'*� � � � �
� � '+��� � ��,.- � ������� � " � ����#
��" � ����&�	��
�/'*�
�
"�������-0' � ���

You must hand in this part of the assignment in the CSC324 drop box in the Bahen Computer Lab, BA2220.

What to hand in electronically: In addition to your paper submission, you must submit your code electronically.
The predicates (including helper predicates) for each question are to be submitted separately, with the filename as
stated in the question. Important: Each submitted file must be self-sufficient. I.e., if you use predicates from
Question 3 to solve Question 4, they must be included in the submission file for Question 4. To submit these files
electronically, use the CDF secure website:

��� � " $ ����&�&�&1' � ���2' � � � � � ��� � ' � 	���"�� � �����
�3"
or use the CDF submit command. Type man submit for more information.

Warning: marks will be deducted for incorrect submission. Note that if the code submitted electronically differs
from the code submitted on paper, we will only mark the electronically submitted version (if, in such a case, you put
comments, etc. only on paper, we will mark the question as if no comments, etc. were provided).

Since we will test your code electronically, you must:
4 make certain that your code runs on CDF,4 use the exact predicate names and argument(s) (including the order of arguments) specified,4 use the exact file names specified in the questions,4 not load any file in any of your submitted files,4 not display anything but the predicate output (no text messages to the user, fancy formatting, etc. — just what

is in the assignment handout).

Marking Questions will be both automarked and inspected manually. Note that we may use a different flight network
than the one given here to automark your code. Your solutions are expected to work for any legal flight network
configuration.
Other Information You must read the requirements for code and marking information on the following web page:

��� �1$ ���5&�&�&1' � "6'7� � � � ��� � '8��� � ��,9	��
:
	���	� �- � ������;
�����
"6'<

� � ; This document constitutes part of the official re-
quirements for this assignment.
Clarification Page and Newsgroup Important corrections (hopefully few or none) and clarifications to the assign-
ment will be posted on the Assignment 5 Clarification page, linked from your section’s CSC324 home page. You are
also responsible for monitoring the CSC324 newsgroup.

Assignment 5. University of Toronto, CSC324 - Principles of Programming Languages, Fall 2004 2

Assignment 5

Due Date: This assignment is due on Wednesday December 8, 2004 at 5pm.

No grace days permitted and no late assignments will be accepted.

Please include this cover sheet, when handing in your paper assignment.

Last Name:

First Name:

Email:

CDF Login:

Student Number:

Date and Time you are handing this in:

I understand that collaboration is not allowed. All answers are my own, written in isolation, without help from
others. This submission is in accordance with the University of Toronto Code of Behavior on Academic Matters

��� �%$ ���5&�&�&(' 	����3"�	5�
��" � ���5� � � ' � � � � � �
� � ' � 	�� � ����� � 	�;������
	����5� � ;��
"6'
�� � � ! ��
�	���� ��� �

Signature

Assignment 5. University of Toronto, CSC324 - Principles of Programming Languages, Fall 2004 3

Prolog Notational Conventions: Predicate and Mode Spec

We shall use the following notation when referring to Prolog predicates: Predicates in Prolog are distinguished by
their name and their arity. The notation

��	 � ����	�������: is therefore used when it is necessary to refer to a predicate
unambiguously; e.g.

	 ��� ��������� specifies the predicate named “
	 ��� �5��� ” that takes 3 arguments.

Sometimes, we may be interested in specifying how specific predicates are meant to be used. To that end, we
shall present a predicate’s usage with a mode spec which has the form:

��	 � ��� 	���-���� '�'�'�� 	���-����
where each

	���-��
denotes how that argument should be instantiated when a goal to

��	 � ���5� is called.
	���-��

has one of the following
forms:

+ArgName This argument should be instantiated to a non-variable term.

-ArgName This argument should be uninstantiated.

?ArgName This argument may or may not be instantiated.

For example
����;��������	��
���"�����
��
;�� � ��
��
��&�
���"���� states that, when using

����;����������
, the first argument should

be instantiated whereas the second and third arguments may or may not be instantiated.
Note that these Prolog notational conventions provide a convenient way to specify Prolog predicates and their

usage. They do not represent in any way the form of your actual code. E.g., when defining predicate
�����
���
	���
����

in
Question 3a, do not use ���
������5-�������� , ���
�����"�������	���� � ����� and ���
���	���
���� as the arguments in your code.

Language Restrictions

In this assignment, you may not use
� � � � � � �
����� 	���-
����� �0'�' ����� 	
"�"������
����� �
������	 � �
����� �
	���;���!�� ! 	�- � �
�������������	�;�;������ � � "5��� � �
��� . Nevertheless, you may use

�������#"��
���$�&% �����('�)������+*+�,�
, and parentheses for group-

ing. If you are in doubt about whether you can use a particular feature of SWI Prolog, please consult the A5 Clarifi-
cation Page, and if it still isn’t clear, consult the newsgroup.

Assignment 5. University of Toronto, CSC324 - Principles of Programming Languages, Fall 2004 4

The Flight Scheduling System II

Assignment 4 helped you hone your skills as logic programmers. For your final Prolog assignment, you will write
important search tools for the flight management system. This will give you a feel for how you might write a real
application in Prolog. First, you will design complex queries about flight networks. Finally, you will plan flight
routes for long trips.

Before continuing, we repeat some definitions and notation that were introduced in Assignment 4. Recall the
example flight network from Assignment 4, depicted here in Figure 1.

Iberia

Toronto

Madrid

Barcelona

Malaga

Valencia

London

Paris

$40/30m

$50/30m

$40/30m

$40/20m

$75/80m

$120/65m $110/75m

$35/120m

$950/540m

$500/360m

Iberia

Iberia

Iberia

$50/60m

$50/60m

$75/45m

Toulouse

$650/420m
United

Air Canada

$220/240m

$80/120m

$40/50m

$50/60m

Iberia

United

United$800/480m

Air Canada
$900/480m

Air Canada

$100/60m

Iberia Iberia

Figure 1: This is the flight network from Assignment 4. Each node denotes an airport-city with its corresponding tax
and minimum security delay. Each link denotes a flight and is labelled with its corresponding airline name, price,
and duration.

Flight Leg
A flight leg is described by a triple list of the form ��� �5��:$����������;
������� � ����:
��� where � �5��: � is the city where the
leg commences, the origin;

������;������
is the airline used for the leg; and � ����:�� is the city where the leg ends, the

destination of the leg.

Flight Path
A flight path is a possibly empty list of (consecutive) legs. For example, the following list represent a path that starts
in Toronto and finishes in Valencia:

��� � � � � ��� � � 	
��� � 	���	��
	�� � 	������������ � � 	���������� � ! ������	�� ! 	�� � ��; � ��	���� � ! 	�� � ��; � ��	�� � ! ������	�� ��	�;���� � ��		��� (1)

Well-formed Flight Path
A flight path is well-formed or legal if the destination city of each leg in the path matches the origin city of the

Assignment 5. University of Toronto, CSC324 - Principles of Programming Languages, Fall 2004 5

subsequent leg in the path. The above path is well-formed but the following one is not:

��� � � � � �
� � � 	
�5� � 	���	���	�� � 	������������ � �
	�;��5� � ��	�� � ! ������	�� ! 	�� � ��; � ��	���� �<! 	�� � ��; � ��	�� � ! ������	�� �
	�;��5� � ��		���

Note that the empty list � � is considered to be a well-formed path.
We can associate a total price and a total duration with every possible flight path. We may also be interested in

the number of different airlines that are used by a flight path.

4 The total price of a flight path, measured in dollars, is the sum of each leg’s price, the tax at the initial airport,
and the taxes at each airport where there is a change of airline. For example, the total price of path (1) is
calculated by adding the price of each of the three legs and the airport taxes at Toronto and Madrid (notice
there is no tax charge at Barcelona since there is no change of airline).

4 The total duration of a path, measured in minutes, is the sum of the duration of each leg plus the security
delay at each airport visited (including the initial origin airport and excluding the final destination airport). For
example, for the path (1) above, the duration is calculated by adding the duration of the three corresponding
legs plus the security delays at Toronto, Madrid, and Barcelona.

4 The number of (different) airlines is the number of distinct airlines used by the path in question. For example,
the above path (1) uses 2 different airlines, namely, Air Canada and Iberia. Observe that the following path
also uses only 2 different airlines:

��� � � � � ��� � � � ! ������	�� � 	������5����� � � 	���������� 	
��� � 	���	��
	 � ! 	�� � ��; � ��	����
� ! 	�� � ��; � ��	�� � ! ������	�� ; � �
� � � ��� � ; � ��� � ��� 	
��� � 	5��	��
	��8� � � � ��� � ���

Note that in order to calculate the total price and duration of a path, one needs to query the flight database using
both predicates

�
;���-�

����
and

	��5� ��� ������� . On the other hand, the total number of different airlines can simply be
obtained by inspecting the flight path in question without using the underlying database.

We now define a complex structure referred to as a flight route.

Flight Route
A (detailed) flight route is a list of the following form:

� ����� � ��� � � ��	���� � ��� � � ���5�
;
������" � ��	���
 �
where

��	���

is a non-empty and well-formed flight path, and

����� � � ,
� � ��	���� � � and

� � ���5�
;
������" stand for the total
price, total duration, and number of different airlines of the flight path in question, respectively. For example, the
following list term represents a flight route that has a total price of $1255, a total duration of 755 minutes uses 2
different airlines, and whose actual path is the above path (1):

���������	��
����	���
�������������������
�������������������	��� ���!�"����#$�%�&�����!�����
�'�)(�*������	��(���� ��*%+������!#	���,(�������*�+������-�'�)(%*!�����-�/.���+�*��"������#!#�#

Assignment 5. University of Toronto, CSC324 - Principles of Programming Languages, Fall 2004 6

Question 1. [1 mark] Fill out the cover sheet correctly.

Question 2. [20 marks] Querying the Database.
Submit your answers to this question on paper.

For each of questions (a)-(e) listed below, write a Prolog query (not a predicate!) that will answer the question
using the

�
;���-�

����
, and

	��5� ��� ������� predicates with the interface defined in Assignment 4, and any other logic you
need. For this task, you may not use helper predicates or the exclusions mentioned at the beginning of the assignment
handout. When a query asks for multiple answers (e.g., ”What flights ...”, ”What pairs ...”), these answers should be
obtained via backtracking by typing “

%
” after each returned answer. Note that your queries must work with any flight

system database that adheres to the specification described in A4.

(a) What flights have a duration greater than 3 hours?

(b) What pairs of distinct cities can be connected using exactly two flights with the same airline?

(c) What city can be reached from Toronto in one flight, and with the cheapest ticket?

(d) What is the city with the most expensive airport tax?

(e) What cities cannot be reached from Valencia with just one flight?

Question 3. [30 marks] Finding Flight Routes.
Submit your code in a file called a5-trip.pl

Now you are going to write Prolog code that will find paths and routes for our flight system.

a. [10 marks] Write a Prolog predicate���������
	���
����������������������
�
��������	������������ �
	���
"!
that holds if

��	���

is a non-redundant path from

������-����
to
����"�������	���� � � . A non-redundant path is one that has no

loops, that is, it never goes through the same airport city more than once from the origin to the destination.

b. [15 marks] Once you have a path between two cities, you will need to compute its properties, namely, its
price, duration and number of different airlines. To that end, write the following three Prolog predicates:

4$# �&%('*)(�+�,�(��� # �-�/.��
	���
0��������� # ��! : it holds iff the Flight Path
��	���

has a total price of
����� � � dollars.

4$# �&%('*)(�+�,��)���	����������1.��
	,��
���� ��)
��	��������"! : it holds iff the Flight Path
��	���

has a total duration of
� � ��	���� � �

minutes.

4$# �&%('*)(�+��2+� 3����+4����+�+�5�/.��
	���
����,2+�,3����+4
�����+�(! : it holds iff the Flight Path
��	���

uses
� � ���5�
;
������" differ-

ent airlines.

c. [5 marks] Finally, you need to put it all together to define a trip. Write a Prolog predicate�(����'0���������������0��� �
�
�����&�+	,����� �0����6���)(�
��!

that holds if 7��5� �
� is a non-redundant route from
�����5-����

to
�
��"�������	���� � � .

For example, the query
�' ����� � � � � � � �
� � � ! 	�� � ��; � ��	�� � ����� � ��� � � ��� � �+��	���
 �,�)'

Assignment 5. University of Toronto, CSC324 - Principles of Programming Languages, Fall 2004 7

would yield, as one of a number of answers:����� � � � ������ � � � ����!� �+� �
�
	���
 � � � � � � � �
� � � � � ���
����� � 	�������� ��� � � 	���������� 	��5� � 	5��	���	�� ! 	�� � ��; � ��	����

The query
�' ����� � � � �5��: � ! 	�� � ��; � ��	�� 7
��� �
��� '

would yield, as one of a number of answers:
� �5��: � � � � � �
� �
7
��� ����� � ������ �����!� �� ��� � � � � � ��� � � � �3�5�
����� � 	������5����� � � 	������5��� 	
�5� � 	���	��
	�� ! 	�� � ��; � ��	�� �

but would also yield as another answer:
� �5��: � � 	��������
7
��� ��� � � ���� �� ����!�� ��� � � 	������5��� � ! ������	�� ! 	�� � ��; � ��	�� �

Finally, the queries
�' ����� � � � � � � �
� � �8� � � � ��� � � 7��5� �
� �)'
�' ����� � � � � � � �
� � � � 	�����" � 7��5� �����)'
would just fail and return

� � as the origin and destination are the same and redundant paths are not considered.

Question 4. [50 marks] Finding Optimal Trips.
Submit your code in a file called a5-optimizing.pl

The
����� � ��� predicate above is useful in finding a route between two cities, but it is of limited practical use because

it doesn’t discriminate between fast and slow routes or between cheap and expensive trips. In flight planning, we
generally want to find the trip that is optimal with respect to some criterion. In our case, we may want to obtain the
fastest trip or the least expensive one.

A naive, brute force approach to finding such a trip is to find all possible paths and then to choose the optimal one
with respect to the criterion, by appealing to backtracking (to obtain all possible flight paths) and negation as failure
(to verify that there is no better flight path than the one just found). Clearly, this approach is too computationally
expensive for large flight networks. In this assignment we require you to develop a more efficient iterative search
algorithm by imposing a limit on the criterion – a price or duration cut-off value – for your trip, and then discarding
partial solutions as soon as they reach this limit.

Your iterative search algorithm is to be based on the following idea: given an initial route, repetitively apply
your algorithm to find “better” routes until you find the optimal one. Rather than the brute force approach described
above, your algorithm should stop exploring partial solutions as soon as they reach the criterion limit (i.e., the price
or duration cut-off). More specifically, the

����� � ��� predicate will yield an initial route. Depending on the designated
� ���5������� � � , the price or duration of this initial route becomes the price or duration limit for your algorithm, which
you use to find a second, better route. The price or duration of that route, in turn, becomes the corresponding limit for
the next, and so on, until no better route is found, at which point you know that the last route you found is the best one.

Assignment 5. University of Toronto, CSC324 - Principles of Programming Languages, Fall 2004 8

a. [35 marks]
Write a Prolog predicate���������(����'�� �������������0�����+�
��������	,����� �0� .������&��������� �0� .�� ����%"�&������6���)(�
��!

that holds iff 7
��� �
� is a Flight Route from
������-����

to
����"�������	���� � � whose � �����
����� � � (i.e., duration or price) is

less than �
�� � �5� .

Precondition: � ���5�
����� � � is instantiated to either � ��� � � or
� � �
	���� � � ; �
�� � ��� is instantiated to a number.

You should have one algorithm that works for both criteria. Do not write separate algorithms for � ��� � � and� � ��	���� � � .

b. [15 marks] Write a Prolog predicate� �
����������'��������������&�0�����
�+�������+	�� ����� � .���� �&�
��� �����0���,6��)(�
�+!

that holds iff 7
��� �
� is the best Flight Route from
������-����

to
����"�������	���� � � with respect to � ���5������� � � .

Precondition: � ���5�
����� � � is instantiated to either � ��� � � or
� � �
	���� � � .

Again, you should have one algorithm that works for both criteria. Do not write separate algorithms for � ��� � � and� � ��	���� � � .

For example, the query
�' ! ��"�������� � � � � � � ��� � � ! 	�� � ��; � ��	 � � ��� � ��� 7��5� ����� '

would yield the following unique answer:
7��5� �
� � �
	�	 �� ���!�� ��� ��� � � � � ��� � � 	
��� � 	���	��
	�� ; � ��� � � ��� � ; � ��� � ��� � ! ������	�� ! 	�� � ��; � ��	�� ���

Also, the query
�' ! ��"�������� � � � � � � ��� � � ����"�� � � ��� � ��� 7���� �
� �)'

would yield, as two of the total five answers:

� � ; � �
� � �
7��5� �
� � � � �!�� #
��!�� �$� ��� � � � � ��� � � 	
��� � 	���	��
	�� ; � ��� � � � ��� %

� � ! 	�� � ��; � ��	
7��5� �
� � �
	�	 �� ���!�� ��� ��� � � � � ��� � � 	
��� � 	���	��
	�� ; � ��� � � ��� � ; � ��� � ��� � ! ������	�� ! 	�� � ��; � ��	�� ��� %

'�'�'

Note: You may use predicates that you defined in Question 3 in your solution to Question 4. If you do so, you must
include these predicates in your Question 4 submission file. Note that we may test your Question 4 code with our
own Question 3 predicates, to avoid penalizing you twice for errors you may have in your Question 3 predicates.

