Computer Science 324 4 Qctober, 2004
St. George Campus University of Toronto

Homework Assignment #2
Due: Wednesday, 20 October, 2004, by 5pm

No submissions will be accepted after 5pm Wednesday, 20 October — no exceptions, no grace days

Silent Policy: A silent policy will take effect 24 hours before this assignment is due. This means that
no question about this assignment will be answered, whether it is asked on the newsgroup, by email, or in
person.
Total Marks: There are 85 marks available in this assignment, but it will be marked out of 75 marks. In
other words, if you get 75 marks, you get 100%.
Handing in this Assignment

What to hand in on paper: Please use an unsealed envelope, attaching the cover page provided to
the front. Note that without a properly completed and signed cover page, your assignment will not be
marked. Put inside:

1. A printout of your solutions for all questions.

2. For each procedure that you write, you must describe the testing strategy that you used. This
should include a table listing the test cases that you designed for your procedure, what output your
procedure returned, and an explanation of why the test case and output are significant in verifying
the correctness of the procedure. Read the following for a discussion of good testing practices:

http://www.cs.toronto.edu/~gpenn/csc324/software.testing.pdf

You must hand in this part of the assignment in the CSC324 drop box in the Bahen Computer Lab,
BA2220.

What to hand in electronically: In addition to your paper submission, you must submit your code
electronically. The procedures (including helper procedures) for each part of each individual question are
to be submitted separately, with the filename as stated in the question. To submit these files electronically,
use the CDF secure website:

https://www.cdf.utoronto.ca/students
or use the CDF submit command. Type man submit for more information.

Warning: marks will be deducted for incorrect submission. Note that if the code submitted electroni-
cally differs from the code submitted on paper, we will only mark the electronically submitted version (if,
in such a case, you put comments, etc. only on paper, we will mark the question as if no comments, etc.
were provided).

Since we will test your code electronically, you must:

o make certain that your code runs on CDF,

e use the exact procedure names and argument(s) (including the order of arguments) specified,

e use the exact file names specified in the questions,

e not use load in any of your submitted files,

e not display anything but the function output (no text messages to the user, fancy formatting, etc.
— just what is in the assignment handout).

Other Information You must read the requirements for code and marking information on the following
web page: http://www.cs.toronto.edu/~anya/a2guidelines.html This document constitutes part of
the official requirements for this assignment.

FAQ Page and Newsgroup Important corrections (hopefully few or none) and clarifications to the as-
signment will be posted on the Assignment 2 FAQ page, linked from your section’s CSC324 home page.
You are also responsible for monitoring the CSC324 newsgroup.




Question 1. (1 mark) Fill out the cover sheet correctly.

Question 2. (9 marks)

a. [4 marks] Define a procedure mult-num that takes a list as input and returns the product of all numbers
in the list. List elements that are not numbers should be ignored. If the input list contains no numbers,
then 1 should be returned. Do not use the Scheme built-in reduce. For example:

1=> (mult-num °(1 2 3 f 4))

;Value: 24
1=> (mult-num ’(14 () (100) 2.5))
;Value: 35.

Call this file mult-num.scm.

b. [5 marks] Define a procedure min-max that takes a non-empty list of numbers as input and returns
a list of two elements: the smallest number that appears in the input list and the largest number that
appears in the input list. Example:

1=> (min-max °’(-10 0 3 -4))
;Value: (-10 3)

Call this file min-max.scm.

Question 3. (10 marks)

a. [3 marks| Define a procedure select-even that takes a list of numbers as input and returns the list that
contains its even numbers, in the same order as they appear in the input list. You can use the built-in
predicate even?. Do not use select from part (b). Example:

]=> (select-even ’(1 2 3 4))
;Value: (2 4)

Call this file select-even.scm.

b. [6 marks] Define a procedure select that takes a unary predicate and a list as input and returns the
list containing all elements from the input list for which the predicate is true, in the same order as they
appear in the input list. You can assume that the input predicate is applicable to every element in the
input list. Example:

1=> (select null? °(C () (1 2 3) ))
;Value: ( OO )

Call this file select.scm.

c. [2 marks] Using select, define select-three, which takes a list of numbers as input and returns the list
of elements from the input list that are divisible by 3, in the same order as they appear in the input list.
Example:

]=> (select-three ‘(1 3 0 -75 4))
;Value: (3 0 -75)

The first argument in your call to select must be an anonymous procedure.
Call this file select-three.scm. Do not include the definition of select in this file.



Question 4. (5 marks) Find a non-recursive procedure that will not terminate when applied to some
(but not necessarily all) inputs. Your procedure should not call any built-in recursive procedures either.
Also provide one input that causes it not to terminate. Hint: Are there functions that can be applied to
themselves?

Do not submit anything electronically for this question.

Question 5. (10 marks) Revised October 9, 2004. ”Lazy Evaluation”. Normally, when Scheme
evaluates a procedure that returns a list, it attempts to build the entire list, and then, if the procedure is
called from the read-eval-print loop, to display the entire list. But there are circumstances in which it is
conceptually more elegant to imagine the output of a procedure as an infinite list, the elements of which
are referenced only as they are needed. This procedure, for example, creates a list of all of the natural
numbers greater than or equal to n, but it never terminates for any n, because there are infinitely many of
them:

(define up-set (lambda (n) (cons n (up-set (+ n 1)))))

Define a function lazy which, given a number n and a unary successor procedure, returns a function that
enumerates the infinite list consisting of n and its successors, one element at a time. Example:

]=> (define up-set
(lambda (n)
(lazy n (lambda (x) (+ x 1)))))
;Value: up-set

]=> (define f (up-set 10))

;Value: £

1= (£ O)
;Value: 10
1=> (£ O)
;Value: 11
1=> (£ O)
;Value: 12

You may use set! in your solution.
Call this file lazy.scm.

Question 6. (20 marks) Directed Graphs. A directed graph is a finite set of nodes with directed edges
that point from one node to another. Here is a picture of a directed graph with five nodes:



e

Some configurations of edges can form a cycle, a path from a node to itself that is at least one edge long.
There is a cycle among the three black nodes in the above picture (actually, there are two cycles — the
other passes through the upper white node). Notice that cycles must follow the direction indicated by their
edges. Multiple edges can point to a single node without creating a cycle, as is the case with the bottom
left node in the above picture.

Directed graphs can be represented in Scheme using an adjacency representation. This can be a list of
3-element lists, for example, in which each node is represented by three items. The first item names the
node, the second item is some data associated with that node, and the third item is a list of names of all of
the nodes reachable by one edge from the node named in the first item. The following is a representation
of the directed graph depicted above:

((1 ‘black (2 3))
(2 ‘white (4 5))
(3 ‘black (4 5))
(4 ‘white ()

(5 ‘black (1)))

where 1 names the topmost node. The data (second item) may not necessarily be colours. In fact, because
the second item could be a list, you can store as much data there as you like. The empty list, (), corre-
sponds to the directed graph with no nodes. It has no cycles.

a. [15 marks] Define a predicate, cyclic?, which, given such an adjacency representation of a directed
graph, indicates whether the directed graph has a cycle. You do not need to exhibit a cycle, if there is one;
you should give only a true or false answer.

Call this file digraph.scm.

b. [5 marks] What data did you need to store at each node as you traversed the graph? Use as little
as possible.
Do not submit anything electronically for this question.

Question 7. (20 marks) Software Verification. In large-scale programming projects, it is important
to document properties that are believed to hold of their sub-components. These properties not only
document the intended behaviour of a component, but can establish conditions on the intended context
of its invocation to ensure its portability. Formally proving these properties is thus a way of verifying the
correctness of a software component in all of its potential invocations. Test suites, while convenient, at
best improve our confidence in a component’s correctness, by evaluating it on a finite collection of possible
inputs.

In the case of functional programming, functional procedures can naturally be thought of as the com-
ponents, and the properties that we need to prove correct often consist of algebraic equations that establish



certain invariants over their possible invocations. Below, we will be looking at invariants that pertain to
lists and their lengths.

Ezample: Consider the following program and sample executions:

(define append
(lambda (X Y)
(if (null? X) Y
(cons (car X) (append (cdr X) Y))))



(define length
(lambda (X)
(if (null? X) O
(+ 1 (length (cdr X)))))

1=> (append ‘(1 2 3) ‘(4 5))
;Value: (1 2 3 4 5)

]=> (length ‘(1 2 3))
;Value: 3

We now prove that for all lists, X and Y, the following equation holds:
(length (append X Y)) = (+ (length X) (length Y)).

This means that (length (append X Y)) always evaluates to the sum of the value of (length X) and
the value of (length Y). If this equation holds, then even if we have made a mistake in defining length
and append, our definitions at least act like length and append in an important respect.

Because these procedures are recursively defined, this claim admits a fairly straightforward inductive
proof. With reference to four basic properties that we can read directly from the source code:

1. (append ) Y) =Y
2. (append (cons E L) Y) = (cons E (append L Y))
3. (length ()) =0

4. (length (cons E L)) = (+ 1 (length L))
we can formulate the following proof:

Proof by mathematical induction on length of X:
Case: X = ():
(length (append X Y))
= (length (append () Y))) [case]
(length Y) [1]
= 0 + (length Y) [arith]
(length ()) + (length Y) [3]
(length X) + (length Y) [case]

Case: X = (cons E L)
Inductive hypothesis (IH): (length (append L Y)) = (+ (length L) (length Y))
(length (append X Y))
= (length (append (cons E L) Y)) [case]
(length (cons E (append (L Y))) [2]

= 1 + (length (append L Y)) [4]
=1 + (length L) + (length Y) [IH]
= (length (cons E L)) + (length Y) [4]
= (length X) + (length Y) [case]



Notice that the if statement in the definition of append corresponds to the two cases in the proof: one
for the “then” branch, and one for the “else” branch. Each step in the proof has a justification, which is
one of the following:

e case — uses a fact assumed to be true in the current case,
e arith — uses a basic fact of arithmetic (you can assume that + works correctly),
e TH — uses the inductive hypothesis

e n — in reference to one of the above facts, where 1 <n < 4.
Now it’s your turn! Consider the following two functions:
(define sum (lambda (L) (if (null? L) 0 (+ (car L) (sum (cdr L))))))
(define increment-list
(lambda (L)
(if (null? L) L

(cons (+ (car L) 1) (increment-list (cdr L))))))

Using the following six facts about these functions:

1. (sum )) =0

2. (sum (cons N L)) =N + (sum L)

3. (length (O) =0

4. (length (cons N L)) = (+ 1 (length L)

5. (increment-list ) = ()

6. (increment-list (cons N L)) = (cons (+ N 1) (increment-list L)),

prove by induction that, if L is a list of integers, then:
(sum (increment-list L)) = (+ (sum L) (length L)).

Each step of your proof must be justified with case, arith, IH or one of the above six facts, just as in the
example above.
Do not submit anything electronically for this question.



Question 8. (10 marks) In this exercise, you will implement a calculator for infixed arithmetic expressions
with operator precedence. But you will do so in a special way: your calculator will be implemented as a
tail-recursive procedure which makes a single linear pass through the input expression. In each call, your
procedure will pass to the next call a continuation, which represents the state of the (possibly unfinished)
computation. Because you are using Scheme, your continuation for unfinished computations can (and
should) be a lambda-expression that is waiting for more input to finish.

Here is some code and a few examples to get you started:

(define calculate
(lambda expression
(reduce-cont calc-initiate expression ‘calc-terminate)))

(define reduce-cont
(lambda (continuation list nularg)
(if (null? list) (continuation nularg)
(reduce-cont (continuation (car list)) (cdr list) nularg))))

(define id (lambda (x) x))
(define paren list)

; Operator opl precedes operator op2 in the standard order of
; arithmetic operations
(define precedes?
(lambda (opl op2)
(member op2 (cdr (member opl (list * / + -))))))

1=> (calculate 3 / 4 + 5)
;Value: 23/4

1=> (calculate 3 + 4 / 5)
;Value: 19/5

1=> (calculate (paren 3 + 4) / 5)
;Value: 7/5

Notice that your continuation never actually gets to peek at the entire arithmetic expression — only the
car, or next token. The implementation of reduce-cont above assumes that your continuation will be
a unary function. calc-initiate initializes your continuation at the beginning of computation, and the
value calc-terminate is used as a signal to your continuation that there will be no more input. paren is
used in expressions to tell Scheme that these are your parentheses, and not Scheme’s.

Hint: Because of the infix ordering of the expressions, the input tokens to your calculator alter-
nate between numbers/values and operators. Generalize calc-initiate to a more general procedure,
calc-continue, which iteratively looks for an expression-followed-by-operator sequence. Then define
calc-initiate using calc-continue and id. In this case, calc-continue will also be recursive, calling
itself tail-recursively to consume more input, and calling calculate to evaluate parenthesized expressions.



a. [3 marks| Start by implementing a calculator that handles only addition and subtraction. No
operator precedence is involved here, so you will not need precedes?. You can apply operators to their
successive arguments in the order that you encounter them. This is equivalent to taking + and - to be of
the same precedence and left-associative.

Call this file calca.scm.

b. [5 marks| Now add multiplication and division. You must use the following order of arithmetic
operations: *, /, +, —. This differs from the standard order, in which * and / have the same precedence,
and + and - have the same precedence. If you did not use the hint for part (a), you definitely should now
— you’ll have to look at each pair of successive operator to determine which one has higher precedence.
Call this file caleb.sem. Do not include procedures from calca.scm in this file.

c. [2 marks] Now add support for parenthesized sub-expressions. You will not see paren in your input
— Scheme evaluates that away, so all that remains is an ordinary list.
Call this file calcc.scm. Do not include procedures from calca.scm and calcb.scm in this file.



