CSC2542
Introduction to Markov Decision Processes

Sheila McIlraith
Department of Computer Science
Winter, 2019
Acknowledgements

With a few exceptions, these slides were developed by David Silver following the notation and development in:

Reinforcement Learning: An Introduction
Sutton & Barto, (Draft 2nd edition)

Thank you to David for sharing his slides.

NOTATION WARNING:
The notation in Sutton & Barto has changed from the 1st to 2nd edition of their book. As you read papers, you’ll also see that notation in the RL and MDP communities varies.
Different Classes Planning Problems

dynamics: deterministic, nondeterministic, probabilistic
observability: full, partial, none
horizon: finite, infinite
objective requirement: satisfying, optimizing

– classical planning
– conditional planning with full observability (FOND)
– conditional planning with partial observability (POND)
– conformant planning
– markov decision processes (MDP)
– partial observable MDP (POMDP)
– preference-based/over-subscription planning
Different Classes Planning Problems

dynamics: deterministic, nondeterministic, probabilistic

observability: full, partial, none

horizon: finite, infinite

objective requirement: satisfying, optimizing

...

– classical planning
– conditional planning with full observability
– conditional planning with partial observability
– conformant planning

– markov decision processes (MDP)
– partial observable MDP (POMDP)
– preference-based/over-subscription planning
1. Markov Processes

2. Markov Reward Processes

3. Markov Decision Processes

4. Extensions to MDPs
Introduction to MDPs

- *Markov decision processes* formally describe an environment for reinforcement learning
- Where the environment is *fully observable*
- i.e. The current *state* completely characterises the process
- Almost all RL problems can be formalised as MDPs, e.g.
 - Optimal control primarily deals with continuous MDPs
 - Partially observable problems can be converted into MDPs
 - Bandits are MDPs with one state
“The future is independent of the past given the present”

Definition

A state S_t is Markov if and only if

$$\mathbb{P} [S_{t+1} \mid S_t] = \mathbb{P} [S_{t+1} \mid S_1, \ldots, S_t]$$

- The state captures all relevant information from the history
- Once the state is known, the history may be thrown away
- i.e. The state is a sufficient statistic of the future
State Transition Matrix

For a Markov state s and successor state s', the state transition probability is defined by

$$P_{ss'} = \Pr \left[S_{t+1} = s' \mid S_t = s \right]$$

State transition matrix P defines transition probabilities from all states s to all successor states s',

$$P = \begin{bmatrix} P_{11} & \cdots & P_{1n} \\ \vdots \\ P_{n1} & \cdots & P_{nn} \end{bmatrix}$$

to

where each row of the matrix sums to 1.
A Markov process is a memoryless random process, i.e. a sequence of random states $S_1, S_2, ...$ with the Markov property.

Definition

A *Markov Process* (or *Markov Chain*) is a tuple $\langle S, P \rangle$

- S is a (finite) set of states
- P is a state transition probability matrix,

 $P_{ss'} = \mathbb{P}[S_{t+1} = s' \mid S_t = s]$
Example: Student Markov Chain
Sample episodes for Student Markov Chain starting from $S_1 = C1$

$S_1, S_2, ..., S_T$

- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep
- C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 C3 Pub C2 Sleep
Example: Student Markov Chain Transition Matrix

\[P = \begin{pmatrix}
C1 & C2 & C3 & Pass & Pub & FB & Sleep \\
0.5 & 0.8 & 0.6 & 0.4 & 0.2 & 0.9 & 1.0 \\
0.2 & 0.4 & 0.4 & 0.1 & 0.4 & 0.9 & 1.0 \\
\end{pmatrix} \]
Markov Reward Process

A Markov reward process is a Markov chain with values.

Definition

A *Markov Reward Process* is a tuple $\langle S, P, R, \gamma \rangle$

- S is a finite set of states
- P is a state transition probability matrix, $P_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$
- R is a reward function, $R_s = \mathbb{E}[R_{t+1} | S_t = s]$
- γ is a discount factor, $\gamma \in [0, 1]$
Example: Student MRP

- **Facebook**: 0.9 → Class 1 (R = -1) 0.1 → Sleep (R = 0)
- **Sleep**: 0.5 → Class 2 (R = -2) 0.5 → Facebook (R = -1)
- **Class 1**: 0.5 → Class 2 (R = -2) 0.5 → Class 3 (R = -2)
- **Class 2**: 0.2 → Class 3 (R = -2) 0.8 → Class 1 (R = -2)
- **Class 3**: 0.6 → Pass (R = +10) 0.4 → Class 2 (R = -2)
- **Pass**: 1.0 → Class 3 (R = -2)
- **Pub**: 0.2 → Class 1 (R = -2) 0.4 → Class 3 (R = -2) 0.4 → Class 2 (R = -2)
- **R = +10**: 0.5 → Class 1 (R = -2) 0.5 → Class 3 (R = -2) 0.2 → Class 2 (R = -2)
The *return* G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \ldots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- The *discount* $\gamma \in [0, 1]$ is the present value of future rewards.
- The value of receiving reward R after $k + 1$ time-steps is $\gamma^k R$.
- This values immediate reward above delayed reward.
 - γ close to 0 leads to "myopic" evaluation
 - γ close to 1 leads to "far-sighted" evaluation
Why discount?

Most Markov reward and decision processes are discounted. Why?

- Mathematically convenient to discount rewards
- Avoids infinite returns in cyclic Markov processes
- Uncertainty about the future may not be fully represented
- If the reward is financial, immediate rewards may earn more interest than delayed rewards
- Animal/human behaviour shows preference for immediate reward
- It is sometimes possible to use \textit{undiscounted} Markov reward processes (i.e. $\gamma = 1$), e.g. if all sequences terminate.
The value function $v(s)$ gives the long-term value of state s

Definition

The *state value function* $v(s)$ of an MRP is the expected return starting from state s

$$v(s) = \mathbb{E} [G_t \mid S_t = s]$$
Example: Student MRP Returns

Sample **returns** for Student MRP:
Starting from $S_1 = C1$ with $\gamma = \frac{1}{2}$

$$G_1 = R_2 + \gamma R_3 + \ldots + \gamma^{T-2} R_T$$

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Value Calculation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 C2 C3 Pass Sleep</td>
<td>$v_1 = -2 - 2 \times \frac{1}{2} - 2 \times \frac{1}{4} + 10 \times \frac{1}{8}$</td>
<td>-2.25</td>
</tr>
<tr>
<td>C1 FB FB C1 C2 Sleep</td>
<td>$v_1 = -2 - 1 \times \frac{1}{2} - 1 \times \frac{1}{4} - 2 \times \frac{1}{8} - 2 \times \frac{1}{16}$</td>
<td>-3.125</td>
</tr>
<tr>
<td>C1 C2 C3 Pub C2 C3 Pass Sleep</td>
<td>$v_1 = -2 - 2 \times \frac{1}{2} - 2 \times \frac{1}{4} + 1 \times \frac{1}{8} - 2 \times \frac{1}{16} \ldots$</td>
<td>-3.41</td>
</tr>
<tr>
<td>C1 FB FB C1 C2 C3 Pub C1</td>
<td>$v_1 = -2 - 1 \times \frac{1}{2} - 1 \times \frac{1}{4} - 2 \times \frac{1}{8} - 2 \times \frac{1}{16} \ldots$</td>
<td>-3.20</td>
</tr>
<tr>
<td>FB FB FB C1 C2 C3 Pub C2 Sleep</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: State-Value Function for Student MRP (1)
Example: State-Value Function for Student MRP (2)
Example: State-Value Function for Student MRP (3)
Bellman Equation for MRPs

The value function can be decomposed into two parts:

- immediate reward R_{t+1}
- discounted value of successor state $\gamma v(S_{t+1})$

$$v(s) = \mathbb{E}[G_t \mid S_t = s]$$
$$= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots \mid S_t = s]$$
$$= \mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \ldots) \mid S_t = s]$$
$$= \mathbb{E}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$
$$= \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s]$$
Bellman Equation for MRPs (2)

\[v(s) = \mathbb{E} [R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s] \]

\[v(s) = R_s + \gamma \sum_{s' \in S} P_{ss'} v(s') \]
Example: Bellman Equation for Student MRP

\[4.3 = -2 + 0.6 \times 10 + 0.4 \times 0.8 \]
The Bellman equation can be expressed concisely using matrices,

\[\mathbf{v} = \mathbf{R} + \gamma \mathbf{P} \mathbf{v} \]

where \(\mathbf{v} \) is a column vector with one entry per state

\[
\begin{bmatrix}
 \mathbf{R}_1 \\
 \vdots \\
 \mathbf{R}_n
\end{bmatrix}
\begin{bmatrix}
 \mathbf{P}_{11} & \ldots & \mathbf{P}_{1n} \\
 \vdots & \ddots & \vdots \\
 \mathbf{P}_{11} & \ldots & \mathbf{P}_{nn}
\end{bmatrix}
\begin{bmatrix}
 \mathbf{v}(1) \\
 \vdots \\
 \mathbf{v}(n)
\end{bmatrix}
\]
Solving the Bellman Equation

- The Bellman equation is a linear equation
- It can be solved directly:

\[v = R + \gamma P v \]

\[(I - \gamma P) v = R \]

\[v = (I - \gamma P)^{-1} R \]

- Computational complexity is \(O(n^3) \) for \(n \) states
- Direct solution only possible for small MRPs
- There are many iterative methods for large MRPs, e.g.
 - Dynamic programming
 - Monte-Carlo evaluation
 - Temporal-Difference learning
A Markov decision process (MDP) is a Markov reward process with decisions. It is an environment in which all states are Markov.

Definition

A *Markov Decision Process* is a tuple \(\langle S, A, P, R, \gamma \rangle \)

- \(S \) is a finite set of states
- \(A \) is a finite set of actions
- \(P \) is a state transition probability matrix,
 \[
 P_{ss'}^a = \mathbb{P} [S_{t+1} = s' \mid S_t = s, A_t = a]
 \]
- \(R \) is a reward function,
 \[
 R_s^a = \mathbb{E} [R_{t+1} \mid S_t = s, A_t = a]
 \]
- \(\gamma \) is a discount factor \(\gamma \in [0, 1] \).
Example: Student MDP
Policies (1)

Definition

A policy π is a distribution over actions given states,

$$\pi(a|s) = P[A_t = a | S_t = s]$$

- A policy fully defines the behaviour of an agent
- MDP policies depend on the current state (not the history)
- i.e. Policies are stationary (time-independent), $A_t \sim \pi(\cdot|S_t)$, $\forall t > 0$
Policies (2)

- Given an MDP \(\mathcal{M} = \langle S, A, \mathcal{P}, \mathcal{R}, \gamma \rangle \) and a policy \(\pi \)
- The state sequence \(S_1, S_2, \ldots \) is a Markov process \(\langle S, \mathcal{P}^\pi \rangle \)
- The state and reward sequence \(S_1, R_2, S_2, \ldots \) is a Markov reward process \(\langle S, \mathcal{P}^\pi, \mathcal{R}^\pi, \gamma \rangle \)
- where

\[
\mathcal{P}^\pi_{s,s'} = \sum_{a \in A} \pi(a|s) \mathcal{P}^a_{ss'} \\
\mathcal{R}^\pi_s = \sum_{a \in A} \pi(a|s) \mathcal{R}^a_s
\]
Value Function

Definition

The *state-value function* $v_\pi(s)$ of an MDP is the expected return starting from state s, and then following policy π

$$v_\pi(s) = \mathbb{E}_\pi [G_t \mid S_t = s]$$

Definition

The *action-value function* $q_\pi(s, a)$ is the expected return starting from state s, taking action a, and then following policy π

$$q_\pi(s, a) = \mathbb{E}_\pi [G_t \mid S_t = s, A_t = a]$$
Example: State-Value Function for Student MDP

\(v_{\pi}(s) \) for \(\pi(a|s) = 0.5, \gamma = 1 \)
The state-value function can again be decomposed into immediate reward plus discounted value of successor state,

$$v_\pi(s) = \mathbb{E}_\pi [R_{t+1} + \gamma v_\pi(S_{t+1}) | S_t = s]$$

The action-value function can similarly be decomposed,

$$q_\pi(s, a) = \mathbb{E}_\pi [R_{t+1} + \gamma q_\pi(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$
Bellman Expectation Equation for V^π

$$v_\pi(s) \leftarrow s$$

$$q_\pi(s, a) \leftarrow a$$

$$v_\pi(s) = \sum_{a \in A} \pi(a|s) q_\pi(s, a)$$
Bellman Expectation Equation for Q^π

$$q_\pi(s, a) \leftarrow s, a$$

$$v_\pi(s') \leftarrow s'$$

$$q_\pi(s, a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_\pi(s')$$
Bellman Expectation Equation for v_π (2)

$$v_\pi(s) = \sum_{a \in A} \pi(a|s) \left(R^a_s + \gamma \sum_{s' \in S} P^a_{ss'} v_\pi(s') \right)$$
Bellman Expectation Equation for q_π (2)

$$q_\pi(s, a) = R_s + \gamma \sum_{s' \in S} \sum_{a' \in A} P^a_{ss'} \pi(a' | s') q_\pi(s', a')$$
Example: Bellman Expectation Equation in Student MDP

7.4 = 0.5 \times (1 + 0.2 \times -1.3 + 0.4 \times 2.7 + 0.4 \times 7.4) + 0.5 \times 10
The Bellman expectation equation can be expressed concisely using the induced MRP,

\[v_\pi = R^{\pi} + \gamma P^{\pi} v_\pi \]

with direct solution

\[v_\pi = \left(I - \gamma P^{\pi} \right)^{-1} R^{\pi} \]
The optimal state-value function $v^*(s)$ is the maximum value function over all policies π:

$$v^*(s) = \max_{\pi} v_{\pi}(s)$$

The optimal action-value function $q^*(s, a)$ is the maximum action-value function over all policies π:

$$q^*(s, a) = \max_{\pi} q_{\pi}(s, a)$$

- The optimal value function specifies the best possible performance in the MDP.
- An MDP is “solved” when we know the optimal value function.
Example: Optimal Value Function for Student MDP

\[v^*(s) \text{ for } \gamma = 1 \]
Example: Optimal Action-Value Function for Student MDP

Facebook
\(R = -1 \)
\(q^* = 5 \)

Quit
\(R = 0 \)
\(q^* = 6 \)

Study
\(R = -2 \)
\(q^* = 6 \)

Sleep
\(R = 0 \)
\(q^* = 0 \)

Facebook
\(R = -1 \)
\(q^* = 5 \)

Study
\(R = -2 \)
\(q^* = 8 \)

Study
\(R = +10 \)
\(q^* = 10 \)

Pub
\(R = +1 \)
\(q^* = 8.4 \)
Define a partial ordering over policies

\[\pi \geq \pi' \text{ if } v_\pi(s) \geq v_{\pi'}(s), \forall s \]

Theorem

For any Markov Decision Process

- There exists an optimal policy \(\pi_* \) that is better than or equal to all other policies, \(\pi_* \geq \pi, \forall \pi \)
- All optimal policies achieve the optimal value function,
 \[v_{\pi_*}(s) = v_*(s) \]
- All optimal policies achieve the optimal action-value function,
 \[q_{\pi_*}(s, a) = q_*(s, a) \]
Finding an Optimal Policy

An optimal policy can be found by maximising over $q_\ast(s, a)$,

$$\pi_\ast(a|s) = \begin{cases}
1 & \text{if } a = \arg\max_{a \in A} q_\ast(s, a) \\
0 & \text{otherwise}
\end{cases}$$

- There is always a deterministic optimal policy for any MDP
- If we know $q_\ast(s, a)$, we immediately have the optimal policy
Example: Optimal Policy for Student MDP

\[\pi^*(a|s) \text{ for } \gamma = 1 \]

\[q^* = 5 \]
\[q^* = 6 \]
\[q^* = 6 \]
\[q^* = 5 \]
\[q^* = 8 \]
\[q^* = 0 \]
\[q^* = 10 \]
\[q^* = 8.4 \]
The optimal value functions are recursively related by the Bellman optimality equations:

$$v^*_*(s) = \max_a q^*_*(s, a)$$
Bellman Optimality Equation for Q^*

$$q^*(s, a) = R_s + \gamma \sum_{s' \in S} P_{sa} v^*(s')$$
Bellman Optimality Equation for V^* (2)

$$v_*(s) = \max_a R^a_s + \gamma \sum_{s' \in S} P^a_{ss'} v_*(s')$$
Bellman Optimality Equation for Q^* (2)

$$q^*(s, a) \leftarrow s, a$$

$$q^*(s', a') \leftarrow a'$$

$$q^*(s, a) = R_s + \gamma \sum_{s' \in S} P^{a}_{ss'} \max_{a'} q^*(s', a')$$
Example: Bellman Optimality Equation in Student MDP

\[6 = \max \{-2 + 8, -1 + 6\} \]
Solving the Bellman Optimality Equation

- Bellman Optimality Equation is non-linear
- No closed form solution (in general)
- Many iterative solution methods
 - Value Iteration
 - Policy Iteration
 - Q-learning
 - Sarsa
Extensions to MDPs

- Infinite and continuous MDPs
- Partially observable MDPs
- Undiscounted, average reward MDPs
The following extensions are all possible:

- **Countably infinite state and/or action spaces**
 - Straightforward

- **Continuous state and/or action spaces**
 - Closed form for linear quadratic model (LQR)

- **Continuous time**
 - Requires partial differential equations
 - Hamilton-Jacobi-Bellman (HJB) equation
 - Limiting case of Bellman equation as time-step → 0
A Partially Observable Markov Decision Process is an MDP with hidden states. It is a hidden Markov model with actions.

Definition

A **POMDP** is a tuple $\langle S, A, O, P, R, Z, \gamma \rangle$

- S is a finite set of states
- A is a finite set of actions
- O is a finite set of observations
- P is a state transition probability matrix,
 $$P_{ss'}^a = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$$
- R is a reward function,
 $$R_s^a = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$$
- Z is an observation function,
 $$Z_{s'o}^a = \mathbb{P}[O_{t+1} = o \mid S_{t+1} = s', A_t = a]$$
- γ is a discount factor $\gamma \in [0, 1]$.
Belief States

Definition

A *history* H_t is a sequence of actions, observations and rewards,

$$H_t = A_0, O_1, R_1, ..., A_{t-1}, O_t, R_t$$

Definition

A *belief state* $b(h)$ is a probability distribution over states, conditioned on the history h

$$b(h) = (\mathbb{P} [S_t = s^1 \mid H_t = h], ..., \mathbb{P} [S_t = s^n \mid H_t = h])$$
The history H_t satisfies the Markov property

The belief state $b(H_t)$ satisfies the Markov property

A POMDP can be reduced to an (infinite) history tree

A POMDP can be reduced to an (infinite) belief state tree
An ergodic Markov process is
- **Recurrent**: each state is visited an infinite number of times
- **Aperiodic**: each state is visited without any systematic period

Theorem

An ergodic Markov process has a limiting stationary distribution \(d^\pi(s) \) with the property

\[
 d^\pi(s) = \sum_{s' \in S} d^\pi(s') P_{s's}
\]
An MDP is ergodic if the Markov chain induced by any policy is ergodic.

For any policy π, an ergodic MDP has an average reward per time-step ρ^π that is independent of start state.

$$\rho^\pi = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=1}^{T} R_t \right]$$
The value function of an undiscounted, ergodic MDP can be expressed in terms of average reward.

\[\tilde{v}_\pi(s) = \mathbb{E}_\pi \left[\sum_{k=1}^{\infty} (R_{t+k} - \rho^\pi) \mid S_t = s \right] \]

There is a corresponding average reward Bellman equation,

\[\tilde{v}_\pi(s) = \mathbb{E}_\pi \left[(R_{t+1} - \rho^\pi) + \sum_{k=1}^{\infty} (R_{t+k+1} - \rho^\pi) \mid S_t = s \right] \]

\[= \mathbb{E}_\pi \left[(R_{t+1} - \rho^\pi) + \tilde{v}_\pi(S_{t+1}) \mid S_t = s \right] \]
Questions?

The only stupid question is the one you were afraid to ask but never did.

-Rich Sutton
KEEP CALM AND MAKE A PLAN